Sha256: f34f8f4b6b6329cb99ef332445162f7d5afba0d05f6678754d6e0949b02612ad
Contents?: true
Size: 1.65 KB
Versions: 1
Compression:
Stored size: 1.65 KB
Contents
# Brainz Artificial Neural Network Library written in Ruby. ## Supported training algorithms * Backpropagation ## Installation Add this line to your application's Gemfile: gem 'brainz' And then execute: $ bundle Or install it yourself as: $ gem install brainz ## Usage ### Simple example, logical AND operation require 'brainz' brainz = Brainz::Brainz.new brainz.teach do |iteration, error| that(1, 1).is(1) that(1, 0).is(0) that(0, 1).is(0) that(0, 0).is(0) p "error_rate = #{'%.3f' % error || 0 } after #{iteration} iterations" if iteration % 10 == 0 end puts "0 and 0 = #{brainz.guess(a: 0, b: 0)}" puts "0 and 1 = #{brainz.guess(a: 0, b: 1)}" puts "1 and 1 = #{brainz.guess(a: 1, b: 1)}" puts "1 and 0 = #{brainz.guess(a: 1, b: 0)}" ### Advanced usage, ligical XOR operation require 'brainz' brainz = Brainz::Brainz.new # specify number of hidden layers # 3 hidden layers with 4, 7 and 3 neurons brainz.num_hidden = [4, 7, 3] # tune learning parameters: learning_rate, momentum, wanted_error (mse) brainz.teach(learning_rate: 0.2, momentum: 0.05, wanted_error: 0.01) do |iteration, error| that(1, 1).is(0) that(1, 0).is(1) that(0, 1).is(1) that(0, 0).is(0) end puts "Learning took #{brainz.last_iterations}, error: #{brainz.error}, time: #{brainz.learning_time} s." ## Contributing 1. Fork it 2. Create your feature branch (`git checkout -b my-new-feature`) 3. Commit your changes (`git commit -am 'Added some feature'`) 4. Push to the branch (`git push origin my-new-feature`) 5. Create new Pull Request
Version data entries
1 entries across 1 versions & 1 rubygems
Version | Path |
---|---|
brainz-0.1.3 | README.md |