module Statsample module Reliability # = Intra-class correlation # According to Shrout & Fleiss (1979, p.422): "ICC is the correlation # between one measurement (either a single rating or a mean of # several ratings) on a target and another measurement obtained on that target" # == Usage # require 'statsample' # size=1000 # a = size.times.map {rand(10)}.to_scale # b = a.recode{|i|i+rand(4)-2} # c =a.recode{|i|i+rand(4)-2} # d = a.recode{|i|i+rand(4)-2} # ds={'a'=>a,'b'=>b,'c'=>c,'d'=>d}.to_dataset # # Use :type attribute to set type to summarize # icc=Statsample::Reliability::ICC.new(ds, :type=>:icc_1_k) # puts icc.summary # # == Reference # * Shrout,P. & Fleiss, J. (1979). Intraclass Correlation: Uses in assessing rater reliability. Psychological Bulletin, 86(2), 420-428 # * McGraw, K. & Wong, S.P. (1996). Forming Inferences About Some Intraclass Correlation Coefficients. Psychological methods, 1(1), 30-46. class ICC include Summarizable # Create a ICC analysis for a given dataset # Each vector is a different measurement. Only uses complete data # (listwise deletion). # attr_reader :df_bt attr_reader :df_wt attr_reader :df_bj attr_reader :df_residual attr_reader :ms_bt attr_reader :ms_wt attr_reader :ms_bj attr_reader :ms_residual alias :bms :ms_bt alias :wms :ms_wt alias :jms :ms_bj alias :ems :ms_residual alias :msr :ms_bt alias :msw :ms_wt alias :msc :ms_bj alias :mse :ms_residual # :section: Shrout and Fleiss ICC denominations attr_reader :icc_1_1 attr_reader :icc_2_1 attr_reader :icc_3_1 attr_reader :icc_1_k attr_reader :icc_2_k attr_reader :icc_3_k # :section: McGraw and Wong ICC denominations attr_reader :icc_1 attr_reader :icc_c_1 attr_reader :icc_a_1 attr_reader :icc_k attr_reader :icc_c_k attr_reader :icc_a_k attr_reader :n, :k attr_reader :total_mean # Type of analysis, for easy summarization # By default, set to :icc_1 # * Shrout & Fleiss(1979) denominations # * :icc_1_1 # * :icc_2_1 # * :icc_3_1 # * :icc_1_k # * :icc_2_k # * :icc_3_k # * McGraw & Wong (1996) denominations # * :icc_1 # * :icc_k # * :icc_c_1 # * :icc_c_k # * :icc_a_1 # * :icc_a_k attr_reader :type # ICC value, set with :type attr_reader :r attr_reader :f attr_reader :lbound attr_reader :ubound attr_accessor :g_rho attr_accessor :alpha attr_accessor :name def initialize(ds, opts=Hash.new) @ds=ds.dup_only_valid @vectors=@ds.vectors.values @n=@ds.cases @k=@ds.fields.size compute @g_rho=0 @alpha=0.05 @icc_name=nil opts_default={:name=>"Intra-class correlation", :type=>:icc_1} @opts=opts_default.merge(opts) @opts.each{|k,v| self.send("#{k}=",v) if self.respond_to? k } end def type=(v) case v when :icc_1_1 @icc_name=_("Shrout & Fleiss ICC(1,1)") @r=@icc_1_1 @f=icc_1_f @lbound, @ubound=icc_1_1_ci(@alpha) when :icc_2_1 @icc_name=_("Shrout & Fleiss ICC(2,1)") @r=@icc_2_1 @f=icc_2_f @lbound, @ubound=icc_2_1_ci(@alpha) when :icc_3_1 @icc_name=_("Shrout & Fleiss ICC(3,1)") @r=@icc_3_1 @f=icc_3_f @lbound, @ubound=icc_3_1_ci(@alpha) when :icc_1_k @icc_name=_("Shrout & Fleiss ICC(1,k)") @r=@icc_1_k @f=icc_1_k_f @lbound, @ubound=icc_1_k_ci(@alpha) when :icc_2_k @icc_name=_("Shrout & Fleiss ICC(2,k)") @r=@icc_2_k @f=icc_2_k_f @lbound, @ubound=icc_2_k_ci(@alpha) when :icc_3_k @icc_name=_("Shrout & Fleiss ICC(3,k)") @r=@icc_3_k @f=icc_3_k_f @lbound, @ubound=icc_3_k_ci(@alpha) when :icc_1 @icc_name=_("McGraw & Wong ICC(1)") @r=@icc_1_1 @f=icc_1_f(@g_rho) @lbound, @ubound=icc_1_1_ci(@alpha) when :icc_k @icc_name=_("McGraw & Wong ICC(K)") @r=@icc_1_k @f=icc_1_k_f(@g_rho) @lbound, @ubound=icc_1_k_ci(@alpha) when :icc_c_1 @icc_name=_("McGraw & Wong ICC(C,1)") @r=@icc_3_1 @f=icc_c_1_f(@g_rho) @lbound, @ubound=icc_3_1_ci(@alpha) when :icc_c_k @icc_name=_("McGraw & Wong ICC(C,K)") @r=@icc_3_k @f=icc_c_k_f(@g_rho) @lbound, @ubound=icc_c_k_ci(@alpha) when :icc_a_1 @icc_name=_("McGraw & Wong ICC(A,1)") @r=@icc_2_1 @f=icc_a_1_f(@g_rho) @lbound,@ubound = icc_2_1_ci(@alpha) when :icc_a_k @icc_name=_("McGraw & Wong ICC(A,K)") @r=@icc_2_k @f=icc_a_k_f(@g_rho) @lbound,@ubound=icc_2_k_ci(@alpha) else raise "Type #{v} doesn't exists" end end def compute @df_bt=n-1 @df_wt=n*(k-1) @df_bj=k-1 @df_residual=(n-1)*(k-1) @total_mean=@vectors.inject(0){|ac,v| ac+v.sum}.quo(n*k) vm=@ds.vector_mean @ss_bt=k*vm.ss(@total_mean) @ms_bt=@ss_bt.quo(@df_bt) @ss_bj=n*@vectors.inject(0){|ac,v| ac+(v.mean-@total_mean).square} @ms_bj=@ss_bj.quo(@df_bj) @ss_wt=@vectors.inject(0){|ac,v| ac+(v-vm).ss(0)} @ms_wt=@ss_wt.quo(@df_wt) @ss_residual=@ss_wt-@ss_bj @ms_residual=@ss_residual.quo(@df_residual) ### # Shrout and Fleiss denomination ### # ICC(1,1) / ICC(1) @icc_1_1=(bms-wms).quo(bms+(k-1)*wms) # ICC(2,1) / ICC(A,1) @icc_2_1=(bms-ems).quo(bms+(k-1)*ems+k*(jms - ems).quo(n)) # ICC(3,1) / ICC(C,1) @icc_3_1=(bms-ems).quo(bms+(k-1)*ems) # ICC(1,K) / ICC(K) @icc_1_k=(bms-wms).quo(bms) # ICC(2,K) / ICC(A,k) @icc_2_k=(bms-ems).quo(bms+(jms-ems).quo(n)) # ICC(3,K) / ICC(C,k) = Cronbach's alpha @icc_3_k=(bms-ems).quo(bms) ### # McGraw and Wong ### end def icc_1_f(rho=0.0) num=msr*(1-rho) den=msw*(1+(k-1)*rho) Statsample::Test::F.new(num, den, @df_bt, @df_wt) end # One way random F, type k def icc_1_k_f(rho=0) num=msr*(1-rho) den=msw Statsample::Test::F.new(num, den, @df_bt, @df_wt) end def icc_c_1_f(rho=0) num=msr*(1-rho) den=mse*(1+(k-1)*rho) Statsample::Test::F.new(num, den, @df_bt, @df_residual) end def icc_c_k_f(rho=0) num=(1-rho) den=1-@icc_3_k Statsample::Test::F.new(num, den, @df_bt, @df_residual) end def v(a,b) ((a*msc+b*mse)**2).quo(((a*msc)**2.quo(k-1))+((b*mse)**2.quo( (n-1) * (k-1)))) end def a(rho) (k*rho).quo(n*(1-rho)) end def b(rho) 1+((k*rho*(n-1)).quo(n*(1-rho))) end def c(rho) rho.quo(n*(1-rho)) end def d(rho) 1+((rho*(n-1)).quo(n*(1-rho))) end private :v, :a, :b, :c, :d def icc_a_1_f(rho=0) fj=jms.quo(ems) num=msr den=a(rho)*msc+b(rho)*mse pp = @icc_2_1 vn=(k-1)*(n-1)*((k*pp*fj+n*(1+(k-1)*pp)-k*pp)**2) vd=(n-1)*(k**2)*(pp**2)*(fj**2)+((n*(1+(k-1)*pp)-k*pp)**2) v=vn.quo(vd) Statsample::Test::F.new(num, den, @df_bt, v) end def icc_a_k_f(rho=0) num=msr den=c(rho)*msc+d(rho)*mse fj=jms.quo(ems) pp = @icc_2_k vn=(k-1)*(n-1)*((k*pp*fj+n*(1+(k-1)*pp)-k*pp)**2) vd=(n-1)*(k**2)*(pp**2)*(fj**2)+((n*(1+(k-1)*pp)-k*pp)**2) v=vn.quo(vd) Statsample::Test::F.new(num, den, @df_bt,v) end # F test for ICC Case 1. Shrout and Fleiss def icc_1_f_shrout Statsample::Test::F.new(bms, wms, @df_bt, @df_wt) end # Intervale of confidence for ICC (1,1) def icc_1_1_ci(alpha=0.05) per=1-(0.5*alpha) fu=icc_1_f.f*Distribution::F.p_value(per, @df_wt, @df_bt) fl=icc_1_f.f.quo(Distribution::F.p_value(per, @df_bt, @df_wt)) [(fl-1).quo(fl+k-1), (fu-1).quo(fu+k-1)] end # Intervale of confidence for ICC (1,k) def icc_1_k_ci(alpha=0.05) per=1-(0.5*alpha) fu=icc_1_f.f*Distribution::F.p_value(per, @df_wt, @df_bt) fl=icc_1_f.f.quo(Distribution::F.p_value(per, @df_bt, @df_wt)) [1-1.quo(fl), 1-1.quo(fu)] end # F test for ICC Case 2 def icc_2_f Statsample::Test::F.new(bms, ems, @df_bt, @df_residual) end # # F* for ICC(2,1) and ICC(2,k) # def icc_2_1_fs(pp,alpha=0.05) fj=jms.quo(ems) per=1-(0.5*alpha) vn=(k-1)*(n-1)*((k*pp*fj+n*(1+(k-1)*pp)-k*pp)**2) vd=(n-1)*(k**2)*(pp**2)*(fj**2)+((n*(1+(k-1)*pp)-k*pp)**2) v=vn.quo(vd) f1=Distribution::F.p_value(per, n-1,v) f2=Distribution::F.p_value(per, v, n-1) [f1,f2] end def icc_2_1_ci(alpha=0.05) icc_2_1_ci_mcgraw end # Confidence interval ICC(A,1), McGawn def icc_2_1_ci_mcgraw(alpha=0.05) fd,fu=icc_2_1_fs(icc_2_1,alpha) cl=(n*(msr-fd*mse)).quo(fd*(k*msc+(k*n-k-n)*mse)+n*msr) cu=(n*(fu*msr-mse)).quo(k*msc+(k*n-k-n)*mse+n*fu*msr) [cl,cu] end def icc_2_k_ci(alpha=0.05) icc_2_k_ci_mcgraw(alpha) end def icc_2_k_ci_mcgraw(alpha=0.05) f1,f2=icc_2_1_fs(icc_2_k,alpha) [ (n*(msr-f1*mse)).quo(f1*(msc-mse)+n*msr), (n*(f2*msr-mse)).quo(msc-mse+n*f2*msr) ] end def icc_2_k_ci_shrout(alpha=0.05) ci=icc_2_1_ci(alpha) [(ci[0]*k).quo(1+(k-1)*ci[0]), (ci[1]*k).quo(1+(k-1)*ci[1])] end def icc_3_f Statsample::Test::F.new(bms, ems, @df_bt, @df_residual) end def icc_3_1_ci(alpha=0.05) per=1-(0.5*alpha) fl=icc_3_f.f.quo(Distribution::F.p_value(per, @df_bt, @df_residual)) fu=icc_3_f.f*Distribution::F.p_value(per, @df_residual, @df_bt) [(fl-1).quo(fl+k-1), (fu-1).quo(fu+k-1)] end def icc_3_k_ci(alpha=0.05) per=1-(0.5*alpha) fl=icc_3_f.f.quo(Distribution::F.p_value(per, @df_bt, @df_residual)) fu=icc_3_f.f*Distribution::F.p_value(per, @df_residual, @df_bt) [1-1.quo(fl),1-1.quo(fu)] end def icc_c_k_ci(alpha=0.05) per=1-(0.5*alpha) fl=icc_c_k_f.f.quo(Distribution::F.p_value(per, @df_bt, @df_residual)) fu=icc_c_k_f.f*Distribution::F.p_value(per, @df_residual, @df_bt) [1-1.quo(fl),1-1.quo(fu)] end def report_building(b) b.section(:name=>name) do |s| s.text @icc_name s.text _("ICC: %0.4f") % @r s.parse_element(@f) s.text _("CI (%0.2f): [%0.4f - %0.4f]") % [(1-@alpha)*100, @lbound, @ubound] end end end end end