use crate::prelude::*; #[cfg(feature = "std")] use crate::runtime::vm::open_file_for_mmap; use crate::runtime::vm::{CompiledModuleId, MmapVec, ModuleMemoryImages, VMWasmCallFunction}; use crate::sync::OnceLock; use crate::{ code::CodeObject, code_memory::CodeMemory, instantiate::CompiledModule, resources::ResourcesRequired, type_registry::TypeCollection, types::{ExportType, ExternType, ImportType}, Engine, }; use alloc::sync::Arc; use core::fmt; use core::ops::Range; use core::ptr::NonNull; #[cfg(feature = "std")] use std::{fs::File, path::Path}; use wasmparser::{Parser, ValidPayload, Validator}; use wasmtime_environ::{ CompiledModuleInfo, EntityIndex, HostPtr, ModuleTypes, ObjectKind, TypeTrace, VMOffsets, VMSharedTypeIndex, }; mod registry; pub use registry::*; /// A compiled WebAssembly module, ready to be instantiated. /// /// A `Module` is a compiled in-memory representation of an input WebAssembly /// binary. A `Module` is then used to create an [`Instance`](crate::Instance) /// through an instantiation process. You cannot call functions or fetch /// globals, for example, on a `Module` because it's purely a code /// representation. Instead you'll need to create an /// [`Instance`](crate::Instance) to interact with the wasm module. /// /// A `Module` can be created by compiling WebAssembly code through APIs such as /// [`Module::new`]. This would be a JIT-style use case where code is compiled /// just before it's used. Alternatively a `Module` can be compiled in one /// process and [`Module::serialize`] can be used to save it to storage. A later /// call to [`Module::deserialize`] will quickly load the module to execute and /// does not need to compile any code, representing a more AOT-style use case. /// /// Currently a `Module` does not implement any form of tiering or dynamic /// optimization of compiled code. Creation of a `Module` via [`Module::new`] or /// related APIs will perform the entire compilation step synchronously. When /// finished no further compilation will happen at runtime or later during /// execution of WebAssembly instances for example. /// /// Compilation of WebAssembly by default goes through Cranelift and is /// recommended to be done once-per-module. The same WebAssembly binary need not /// be compiled multiple times and can instead used an embedder-cached result of /// the first call. /// /// `Module` is thread-safe and safe to share across threads. /// /// ## Modules and `Clone` /// /// Using `clone` on a `Module` is a cheap operation. It will not create an /// entirely new module, but rather just a new reference to the existing module. /// In other words it's a shallow copy, not a deep copy. /// /// ## Examples /// /// There are a number of ways you can create a `Module`, for example pulling /// the bytes from a number of locations. One example is loading a module from /// the filesystem: /// /// ```no_run /// # use wasmtime::*; /// # fn main() -> anyhow::Result<()> { /// let engine = Engine::default(); /// let module = Module::from_file(&engine, "path/to/foo.wasm")?; /// # Ok(()) /// # } /// ``` /// /// You can also load the wasm text format if more convenient too: /// /// ```no_run /// # use wasmtime::*; /// # fn main() -> anyhow::Result<()> { /// let engine = Engine::default(); /// // Now we're using the WebAssembly text extension: `.wat`! /// let module = Module::from_file(&engine, "path/to/foo.wat")?; /// # Ok(()) /// # } /// ``` /// /// And if you've already got the bytes in-memory you can use the /// [`Module::new`] constructor: /// /// ```no_run /// # use wasmtime::*; /// # fn main() -> anyhow::Result<()> { /// let engine = Engine::default(); /// # let wasm_bytes: Vec = Vec::new(); /// let module = Module::new(&engine, &wasm_bytes)?; /// /// // It also works with the text format! /// let module = Module::new(&engine, "(module (func))")?; /// # Ok(()) /// # } /// ``` /// /// Serializing and deserializing a module looks like: /// /// ```no_run /// # use wasmtime::*; /// # fn main() -> anyhow::Result<()> { /// let engine = Engine::default(); /// # let wasm_bytes: Vec = Vec::new(); /// let module = Module::new(&engine, &wasm_bytes)?; /// let module_bytes = module.serialize()?; /// /// // ... can save `module_bytes` to disk or other storage ... /// /// // recreate the module from the serialized bytes. For the `unsafe` bits /// // see the documentation of `deserialize`. /// let module = unsafe { Module::deserialize(&engine, &module_bytes)? }; /// # Ok(()) /// # } /// ``` /// /// [`Config`]: crate::Config #[derive(Clone)] pub struct Module { inner: Arc, } struct ModuleInner { engine: Engine, /// The compiled artifacts for this module that will be instantiated and /// executed. module: CompiledModule, /// Runtime information such as the underlying mmap, type information, etc. /// /// Note that this `Arc` is used to share information between compiled /// modules within a component. For bare core wasm modules created with /// `Module::new`, for example, this is a uniquely owned `Arc`. code: Arc, /// A set of initialization images for memories, if any. /// /// Note that this is behind a `OnceCell` to lazily create this image. On /// Linux where `memfd_create` may be used to create the backing memory /// image this is a pretty expensive operation, so by deferring it this /// improves memory usage for modules that are created but may not ever be /// instantiated. memory_images: OnceLock>, /// Flag indicating whether this module can be serialized or not. serializable: bool, /// Runtime offset information for `VMContext`. offsets: VMOffsets, } impl fmt::Debug for Module { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("Module") .field("name", &self.name()) .finish_non_exhaustive() } } impl fmt::Debug for ModuleInner { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("ModuleInner") .field("name", &self.module.module().name.as_ref()) .finish_non_exhaustive() } } impl Module { /// Creates a new WebAssembly `Module` from the given in-memory `bytes`. /// /// The `bytes` provided must be in one of the following formats: /// /// * A [binary-encoded][binary] WebAssembly module. This is always supported. /// * A [text-encoded][text] instance of the WebAssembly text format. /// This is only supported when the `wat` feature of this crate is enabled. /// If this is supplied then the text format will be parsed before validation. /// Note that the `wat` feature is enabled by default. /// /// The data for the wasm module must be loaded in-memory if it's present /// elsewhere, for example on disk. This requires that the entire binary is /// loaded into memory all at once, this API does not support streaming /// compilation of a module. /// /// The WebAssembly binary will be decoded and validated. It will also be /// compiled according to the configuration of the provided `engine`. /// /// # Errors /// /// This function may fail and return an error. Errors may include /// situations such as: /// /// * The binary provided could not be decoded because it's not a valid /// WebAssembly binary /// * The WebAssembly binary may not validate (e.g. contains type errors) /// * Implementation-specific limits were exceeded with a valid binary (for /// example too many locals) /// * The wasm binary may use features that are not enabled in the /// configuration of `engine` /// * If the `wat` feature is enabled and the input is text, then it may be /// rejected if it fails to parse. /// /// The error returned should contain full information about why module /// creation failed if one is returned. /// /// [binary]: https://webassembly.github.io/spec/core/binary/index.html /// [text]: https://webassembly.github.io/spec/core/text/index.html /// /// # Examples /// /// The `new` function can be invoked with a in-memory array of bytes: /// /// ```no_run /// # use wasmtime::*; /// # fn main() -> anyhow::Result<()> { /// # let engine = Engine::default(); /// # let wasm_bytes: Vec = Vec::new(); /// let module = Module::new(&engine, &wasm_bytes)?; /// # Ok(()) /// # } /// ``` /// /// Or you can also pass in a string to be parsed as the wasm text /// format: /// /// ``` /// # use wasmtime::*; /// # fn main() -> anyhow::Result<()> { /// # let engine = Engine::default(); /// let module = Module::new(&engine, "(module (func))")?; /// # Ok(()) /// # } /// ``` #[cfg(any(feature = "cranelift", feature = "winch"))] pub fn new(engine: &Engine, bytes: impl AsRef<[u8]>) -> Result { crate::CodeBuilder::new(engine) .wasm_binary_or_text(bytes.as_ref(), None)? .compile_module() } /// Creates a new WebAssembly `Module` from the contents of the given /// `file` on disk. /// /// This is a convenience function that will read the `file` provided and /// pass the bytes to the [`Module::new`] function. For more information /// see [`Module::new`] /// /// # Examples /// /// ```no_run /// # use wasmtime::*; /// # fn main() -> anyhow::Result<()> { /// let engine = Engine::default(); /// let module = Module::from_file(&engine, "./path/to/foo.wasm")?; /// # Ok(()) /// # } /// ``` /// /// The `.wat` text format is also supported: /// /// ```no_run /// # use wasmtime::*; /// # fn main() -> anyhow::Result<()> { /// # let engine = Engine::default(); /// let module = Module::from_file(&engine, "./path/to/foo.wat")?; /// # Ok(()) /// # } /// ``` #[cfg(all(feature = "std", any(feature = "cranelift", feature = "winch")))] pub fn from_file(engine: &Engine, file: impl AsRef) -> Result { crate::CodeBuilder::new(engine) .wasm_binary_or_text_file(file.as_ref())? .compile_module() } /// Creates a new WebAssembly `Module` from the given in-memory `binary` /// data. /// /// This is similar to [`Module::new`] except that it requires that the /// `binary` input is a WebAssembly binary, the text format is not supported /// by this function. It's generally recommended to use [`Module::new`], but /// if it's required to not support the text format this function can be /// used instead. /// /// # Examples /// /// ``` /// # use wasmtime::*; /// # fn main() -> anyhow::Result<()> { /// # let engine = Engine::default(); /// let wasm = b"\0asm\x01\0\0\0"; /// let module = Module::from_binary(&engine, wasm)?; /// # Ok(()) /// # } /// ``` /// /// Note that the text format is **not** accepted by this function: /// /// ``` /// # use wasmtime::*; /// # fn main() -> anyhow::Result<()> { /// # let engine = Engine::default(); /// assert!(Module::from_binary(&engine, b"(module)").is_err()); /// # Ok(()) /// # } /// ``` #[cfg(any(feature = "cranelift", feature = "winch"))] pub fn from_binary(engine: &Engine, binary: &[u8]) -> Result { crate::CodeBuilder::new(engine) .wasm_binary(binary, None)? .compile_module() } /// Creates a new WebAssembly `Module` from the contents of the given `file` /// on disk, but with assumptions that the file is from a trusted source. /// The file should be a binary- or text-format WebAssembly module, or a /// precompiled artifact generated by the same version of Wasmtime. /// /// # Unsafety /// /// All of the reasons that [`deserialize`] is `unsafe` apply to this /// function as well. Arbitrary data loaded from a file may trick Wasmtime /// into arbitrary code execution since the contents of the file are not /// validated to be a valid precompiled module. /// /// [`deserialize`]: Module::deserialize /// /// Additionally though this function is also `unsafe` because the file /// referenced must remain unchanged and a valid precompiled module for the /// entire lifetime of the [`Module`] returned. Any changes to the file on /// disk may change future instantiations of the module to be incorrect. /// This is because the file is mapped into memory and lazily loaded pages /// reflect the current state of the file, not necessarily the original /// state of the file. #[cfg(all(feature = "std", any(feature = "cranelift", feature = "winch")))] pub unsafe fn from_trusted_file(engine: &Engine, file: impl AsRef) -> Result { let open_file = open_file_for_mmap(file.as_ref())?; let mmap = MmapVec::from_file(open_file)?; if &mmap[0..4] == b"\x7fELF" { let code = engine.load_code(mmap, ObjectKind::Module)?; return Module::from_parts(engine, code, None); } crate::CodeBuilder::new(engine) .wasm_binary_or_text(&mmap[..], Some(file.as_ref()))? .compile_module() } /// Deserializes an in-memory compiled module previously created with /// [`Module::serialize`] or [`Engine::precompile_module`]. /// /// This function will deserialize the binary blobs emitted by /// [`Module::serialize`] and [`Engine::precompile_module`] back into an /// in-memory [`Module`] that's ready to be instantiated. /// /// Note that the [`Module::deserialize_file`] method is more optimized than /// this function, so if the serialized module is already present in a file /// it's recommended to use that method instead. /// /// # Unsafety /// /// This function is marked as `unsafe` because if fed invalid input or used /// improperly this could lead to memory safety vulnerabilities. This method /// should not, for example, be exposed to arbitrary user input. /// /// The structure of the binary blob read here is only lightly validated /// internally in `wasmtime`. This is intended to be an efficient /// "rehydration" for a [`Module`] which has very few runtime checks beyond /// deserialization. Arbitrary input could, for example, replace valid /// compiled code with any other valid compiled code, meaning that this can /// trivially be used to execute arbitrary code otherwise. /// /// For these reasons this function is `unsafe`. This function is only /// designed to receive the previous input from [`Module::serialize`] and /// [`Engine::precompile_module`]. If the exact output of those functions /// (unmodified) is passed to this function then calls to this function can /// be considered safe. It is the caller's responsibility to provide the /// guarantee that only previously-serialized bytes are being passed in /// here. /// /// Note that this function is designed to be safe receiving output from /// *any* compiled version of `wasmtime` itself. This means that it is safe /// to feed output from older versions of Wasmtime into this function, in /// addition to newer versions of wasmtime (from the future!). These inputs /// will deterministically and safely produce an `Err`. This function only /// successfully accepts inputs from the same version of `wasmtime`, but the /// safety guarantee only applies to externally-defined blobs of bytes, not /// those defined by any version of wasmtime. (this means that if you cache /// blobs across versions of wasmtime you can be safely guaranteed that /// future versions of wasmtime will reject old cache entries). pub unsafe fn deserialize(engine: &Engine, bytes: impl AsRef<[u8]>) -> Result { let code = engine.load_code_bytes(bytes.as_ref(), ObjectKind::Module)?; Module::from_parts(engine, code, None) } /// Same as [`deserialize`], except that the contents of `path` are read to /// deserialize into a [`Module`]. /// /// This method is provided because it can be faster than [`deserialize`] /// since the data doesn't need to be copied around, but rather the module /// can be used directly from an mmap'd view of the file provided. /// /// [`deserialize`]: Module::deserialize /// /// # Unsafety /// /// All of the reasons that [`deserialize`] is `unsafe` applies to this /// function as well. Arbitrary data loaded from a file may trick Wasmtime /// into arbitrary code execution since the contents of the file are not /// validated to be a valid precompiled module. /// /// Additionally though this function is also `unsafe` because the file /// referenced must remain unchanged and a valid precompiled module for the /// entire lifetime of the [`Module`] returned. Any changes to the file on /// disk may change future instantiations of the module to be incorrect. /// This is because the file is mapped into memory and lazily loaded pages /// reflect the current state of the file, not necessarily the original /// state of the file. #[cfg(feature = "std")] pub unsafe fn deserialize_file(engine: &Engine, path: impl AsRef) -> Result { let file = open_file_for_mmap(path.as_ref())?; Self::deserialize_open_file(engine, file) .with_context(|| format!("failed deserialization for: {}", path.as_ref().display())) } /// Same as [`deserialize_file`], except that it takes an open `File` /// instead of a path. /// /// This method is provided because it can be used instead of /// [`deserialize_file`] in situations where `wasmtime` is running with /// limited file system permissions. In that case a process /// with file system access can pass already opened files to `wasmtime`. /// /// [`deserialize_file`]: Module::deserialize_file /// /// Note that the corresponding will be mapped as private writeable /// (copy-on-write) and executable. For `windows` this means the file needs /// to be opened with at least `FILE_GENERIC_READ | FILE_GENERIC_EXECUTE` /// [`access_mode`]. /// /// [`access_mode`]: https://doc.rust-lang.org/std/os/windows/fs/trait.OpenOptionsExt.html#tymethod.access_mode /// /// # Unsafety /// /// All of the reasons that [`deserialize_file`] is `unsafe` applies to this /// function as well. #[cfg(feature = "std")] pub unsafe fn deserialize_open_file(engine: &Engine, file: File) -> Result { let code = engine.load_code_file(file, ObjectKind::Module)?; Module::from_parts(engine, code, None) } /// Entrypoint for creating a `Module` for all above functions, both /// of the AOT and jit-compiled categories. /// /// In all cases the compilation artifact, `code_memory`, is provided here. /// The `info_and_types` argument is `None` when a module is being /// deserialized from a precompiled artifact or it's `Some` if it was just /// compiled and the values are already available. pub(crate) fn from_parts( engine: &Engine, code_memory: Arc, info_and_types: Option<(CompiledModuleInfo, ModuleTypes)>, ) -> Result { // Acquire this module's metadata and type information, deserializing // it from the provided artifact if it wasn't otherwise provided // already. let (info, types) = match info_and_types { Some((info, types)) => (info, types), None => postcard::from_bytes(code_memory.wasmtime_info())?, }; // Register function type signatures into the engine for the lifetime // of the `Module` that will be returned. This notably also builds up // maps for trampolines to be used for this module when inserted into // stores. // // Note that the unsafety here should be ok since the `trampolines` // field should only point to valid trampoline function pointers // within the text section. let signatures = TypeCollection::new_for_module(engine, &types); // Package up all our data into a `CodeObject` and delegate to the final // step of module compilation. let code = Arc::new(CodeObject::new(code_memory, signatures, types.into())); Module::from_parts_raw(engine, code, info, true) } pub(crate) fn from_parts_raw( engine: &Engine, code: Arc, info: CompiledModuleInfo, serializable: bool, ) -> Result { let module = CompiledModule::from_artifacts(code.code_memory().clone(), info, engine.profiler())?; // Validate the module can be used with the current instance allocator. let offsets = VMOffsets::new(HostPtr, module.module()); engine .allocator() .validate_module(module.module(), &offsets)?; Ok(Self { inner: Arc::new(ModuleInner { engine: engine.clone(), code, memory_images: OnceLock::new(), module, serializable, offsets, }), }) } /// Validates `binary` input data as a WebAssembly binary given the /// configuration in `engine`. /// /// This function will perform a speedy validation of the `binary` input /// WebAssembly module (which is in [binary form][binary], the text format /// is not accepted by this function) and return either `Ok` or `Err` /// depending on the results of validation. The `engine` argument indicates /// configuration for WebAssembly features, for example, which are used to /// indicate what should be valid and what shouldn't be. /// /// Validation automatically happens as part of [`Module::new`]. /// /// # Errors /// /// If validation fails for any reason (type check error, usage of a feature /// that wasn't enabled, etc) then an error with a description of the /// validation issue will be returned. /// /// [binary]: https://webassembly.github.io/spec/core/binary/index.html pub fn validate(engine: &Engine, binary: &[u8]) -> Result<()> { let mut validator = Validator::new_with_features(engine.features()); let mut functions = Vec::new(); for payload in Parser::new(0).parse_all(binary) { let payload = payload?; if let ValidPayload::Func(a, b) = validator.payload(&payload)? { functions.push((a, b)); } if let wasmparser::Payload::Version { encoding, .. } = &payload { if let wasmparser::Encoding::Component = encoding { bail!("component passed to module validation"); } } } engine.run_maybe_parallel(functions, |(validator, body)| { // FIXME: it would be best here to use a rayon-specific parallel // iterator that maintains state-per-thread to share the function // validator allocations (`Default::default` here) across multiple // functions. validator.into_validator(Default::default()).validate(&body) })?; Ok(()) } /// Serializes this module to a vector of bytes. /// /// This function is similar to the [`Engine::precompile_module`] method /// where it produces an artifact of Wasmtime which is suitable to later /// pass into [`Module::deserialize`]. If a module is never instantiated /// then it's recommended to use [`Engine::precompile_module`] instead of /// this method, but if a module is both instantiated and serialized then /// this method can be useful to get the serialized version without /// compiling twice. #[cfg(any(feature = "cranelift", feature = "winch"))] pub fn serialize(&self) -> Result> { // The current representation of compiled modules within a compiled // component means that it cannot be serialized. The mmap returned here // is the mmap for the entire component and while it contains all // necessary data to deserialize this particular module it's all // embedded within component-specific information. // // It's not the hardest thing in the world to support this but it's // expected that there's not much of a use case at this time. In theory // all that needs to be done is to edit the `.wasmtime.info` section // to contains this module's metadata instead of the metadata for the // whole component. The metadata itself is fairly trivially // recreateable here it's more that there's no easy one-off API for // editing the sections of an ELF object to use here. // // Overall for now this simply always returns an error in this // situation. If you're reading this and feel that the situation should // be different please feel free to open an issue. if !self.inner.serializable { bail!("cannot serialize a module exported from a component"); } Ok(self.compiled_module().mmap().to_vec()) } pub(crate) fn compiled_module(&self) -> &CompiledModule { &self.inner.module } pub(crate) fn code_object(&self) -> &Arc { &self.inner.code } pub(crate) fn env_module(&self) -> &Arc { self.compiled_module().module() } pub(crate) fn types(&self) -> &ModuleTypes { self.inner.code.module_types() } pub(crate) fn signatures(&self) -> &TypeCollection { self.inner.code.signatures() } /// Returns identifier/name that this [`Module`] has. This name /// is used in traps/backtrace details. /// /// Note that most LLVM/clang/Rust-produced modules do not have a name /// associated with them, but other wasm tooling can be used to inject or /// add a name. /// /// # Examples /// /// ``` /// # use wasmtime::*; /// # fn main() -> anyhow::Result<()> { /// # let engine = Engine::default(); /// let module = Module::new(&engine, "(module $foo)")?; /// assert_eq!(module.name(), Some("foo")); /// /// let module = Module::new(&engine, "(module)")?; /// assert_eq!(module.name(), None); /// /// # Ok(()) /// # } /// ``` pub fn name(&self) -> Option<&str> { self.compiled_module().module().name.as_deref() } /// Returns the list of imports that this [`Module`] has and must be /// satisfied. /// /// This function returns the list of imports that the wasm module has, but /// only the types of each import. The type of each import is used to /// typecheck the [`Instance::new`](crate::Instance::new) method's `imports` /// argument. The arguments to that function must match up 1-to-1 with the /// entries in the array returned here. /// /// The imports returned reflect the order of the imports in the wasm module /// itself, and note that no form of deduplication happens. /// /// # Examples /// /// Modules with no imports return an empty list here: /// /// ``` /// # use wasmtime::*; /// # fn main() -> anyhow::Result<()> { /// # let engine = Engine::default(); /// let module = Module::new(&engine, "(module)")?; /// assert_eq!(module.imports().len(), 0); /// # Ok(()) /// # } /// ``` /// /// and modules with imports will have a non-empty list: /// /// ``` /// # use wasmtime::*; /// # fn main() -> anyhow::Result<()> { /// # let engine = Engine::default(); /// let wat = r#" /// (module /// (import "host" "foo" (func)) /// ) /// "#; /// let module = Module::new(&engine, wat)?; /// assert_eq!(module.imports().len(), 1); /// let import = module.imports().next().unwrap(); /// assert_eq!(import.module(), "host"); /// assert_eq!(import.name(), "foo"); /// match import.ty() { /// ExternType::Func(_) => { /* ... */ } /// _ => panic!("unexpected import type!"), /// } /// # Ok(()) /// # } /// ``` pub fn imports<'module>( &'module self, ) -> impl ExactSizeIterator> + 'module { let module = self.compiled_module().module(); let types = self.types(); let engine = self.engine(); module .imports() .map(move |(imp_mod, imp_field, mut ty)| { ty.canonicalize_for_runtime_usage(&mut |i| { self.signatures().shared_type(i).unwrap() }); ImportType::new(imp_mod, imp_field, ty, types, engine) }) .collect::>() .into_iter() } /// Returns the list of exports that this [`Module`] has and will be /// available after instantiation. /// /// This function will return the type of each item that will be returned /// from [`Instance::exports`](crate::Instance::exports). Each entry in this /// list corresponds 1-to-1 with that list, and the entries here will /// indicate the name of the export along with the type of the export. /// /// # Examples /// /// Modules might not have any exports: /// /// ``` /// # use wasmtime::*; /// # fn main() -> anyhow::Result<()> { /// # let engine = Engine::default(); /// let module = Module::new(&engine, "(module)")?; /// assert!(module.exports().next().is_none()); /// # Ok(()) /// # } /// ``` /// /// When the exports are not empty, you can inspect each export: /// /// ``` /// # use wasmtime::*; /// # fn main() -> anyhow::Result<()> { /// # let engine = Engine::default(); /// let wat = r#" /// (module /// (func (export "foo")) /// (memory (export "memory") 1) /// ) /// "#; /// let module = Module::new(&engine, wat)?; /// assert_eq!(module.exports().len(), 2); /// /// let mut exports = module.exports(); /// let foo = exports.next().unwrap(); /// assert_eq!(foo.name(), "foo"); /// match foo.ty() { /// ExternType::Func(_) => { /* ... */ } /// _ => panic!("unexpected export type!"), /// } /// /// let memory = exports.next().unwrap(); /// assert_eq!(memory.name(), "memory"); /// match memory.ty() { /// ExternType::Memory(_) => { /* ... */ } /// _ => panic!("unexpected export type!"), /// } /// # Ok(()) /// # } /// ``` pub fn exports<'module>( &'module self, ) -> impl ExactSizeIterator> + 'module { let module = self.compiled_module().module(); let types = self.types(); let engine = self.engine(); module.exports.iter().map(move |(name, entity_index)| { ExportType::new(name, module.type_of(*entity_index), types, engine) }) } /// Looks up an export in this [`Module`] by name. /// /// This function will return the type of an export with the given name. /// /// # Examples /// /// There may be no export with that name: /// /// ``` /// # use wasmtime::*; /// # fn main() -> anyhow::Result<()> { /// # let engine = Engine::default(); /// let module = Module::new(&engine, "(module)")?; /// assert!(module.get_export("foo").is_none()); /// # Ok(()) /// # } /// ``` /// /// When there is an export with that name, it is returned: /// /// ``` /// # use wasmtime::*; /// # fn main() -> anyhow::Result<()> { /// # let engine = Engine::default(); /// let wat = r#" /// (module /// (func (export "foo")) /// (memory (export "memory") 1) /// ) /// "#; /// let module = Module::new(&engine, wat)?; /// let foo = module.get_export("foo"); /// assert!(foo.is_some()); /// /// let foo = foo.unwrap(); /// match foo { /// ExternType::Func(_) => { /* ... */ } /// _ => panic!("unexpected export type!"), /// } /// /// # Ok(()) /// # } /// ``` pub fn get_export(&self, name: &str) -> Option { let module = self.compiled_module().module(); let entity_index = module.exports.get(name)?; Some(ExternType::from_wasmtime( self.engine(), self.types(), &module.type_of(*entity_index), )) } /// Looks up an export in this [`Module`] by name to get its index. /// /// This function will return the index of an export with the given name. This can be useful /// to avoid the cost of looking up the export by name multiple times. Instead the /// [`ModuleExport`] can be stored and used to look up the export on the /// [`Instance`](crate::Instance) later. pub fn get_export_index(&self, name: &str) -> Option { let compiled_module = self.compiled_module(); let module = compiled_module.module(); module .exports .get_full(name) .map(|(export_name_index, _, &entity)| ModuleExport { module: self.id(), entity, export_name_index, }) } /// Returns the [`Engine`] that this [`Module`] was compiled by. pub fn engine(&self) -> &Engine { &self.inner.engine } /// Returns a summary of the resources required to instantiate this /// [`Module`]. /// /// Potential uses of the returned information: /// /// * Determining whether your pooling allocator configuration supports /// instantiating this module. /// /// * Deciding how many of which `Module` you want to instantiate within a /// fixed amount of resources, e.g. determining whether to create 5 /// instances of module X or 10 instances of module Y. /// /// # Example /// /// ``` /// # fn main() -> wasmtime::Result<()> { /// use wasmtime::{Config, Engine, Module}; /// /// let mut config = Config::new(); /// config.wasm_multi_memory(true); /// let engine = Engine::new(&config)?; /// /// let module = Module::new(&engine, r#" /// (module /// ;; Import a memory. Doesn't count towards required resources. /// (import "a" "b" (memory 10)) /// ;; Define two local memories. These count towards the required /// ;; resources. /// (memory 1) /// (memory 6) /// ) /// "#)?; /// /// let resources = module.resources_required(); /// /// // Instantiating the module will require allocating two memories, and /// // the maximum initial memory size is six Wasm pages. /// assert_eq!(resources.num_memories, 2); /// assert_eq!(resources.max_initial_memory_size, Some(6)); /// /// // The module doesn't need any tables. /// assert_eq!(resources.num_tables, 0); /// assert_eq!(resources.max_initial_table_size, None); /// # Ok(()) } /// ``` pub fn resources_required(&self) -> ResourcesRequired { let em = self.env_module(); let num_memories = u32::try_from(em.num_defined_memories()).unwrap(); let max_initial_memory_size = em .memories .values() .skip(em.num_imported_memories) .map(|memory| memory.limits.min) .max(); let num_tables = u32::try_from(em.num_defined_tables()).unwrap(); let max_initial_table_size = em .tables .values() .skip(em.num_imported_tables) .map(|table| table.limits.min) .max(); ResourcesRequired { num_memories, max_initial_memory_size, num_tables, max_initial_table_size, } } /// Returns the range of bytes in memory where this module's compilation /// image resides. /// /// The compilation image for a module contains executable code, data, debug /// information, etc. This is roughly the same as the `Module::serialize` /// but not the exact same. /// /// The range of memory reported here is exposed to allow low-level /// manipulation of the memory in platform-specific manners such as using /// `mlock` to force the contents to be paged in immediately or keep them /// paged in after they're loaded. /// /// It is not safe to modify the memory in this range, nor is it safe to /// modify the protections of memory in this range. pub fn image_range(&self) -> Range<*const u8> { self.compiled_module().mmap().image_range() } /// Force initialization of copy-on-write images to happen here-and-now /// instead of when they're requested during first instantiation. /// /// When [copy-on-write memory /// initialization](crate::Config::memory_init_cow) is enabled then Wasmtime /// will lazily create the initialization image for a module. This method /// can be used to explicitly dictate when this initialization happens. /// /// Note that this largely only matters on Linux when memfd is used. /// Otherwise the copy-on-write image typically comes from disk and in that /// situation the creation of the image is trivial as the image is always /// sourced from disk. On Linux, though, when memfd is used a memfd is /// created and the initialization image is written to it. /// /// Also note that this method is not required to be called, it's available /// as a performance optimization if required but is otherwise handled /// automatically. pub fn initialize_copy_on_write_image(&self) -> Result<()> { self.memory_images()?; Ok(()) } /// Get the map from `.text` section offsets to Wasm binary offsets for this /// module. /// /// Each entry is a (`.text` section offset, Wasm binary offset) pair. /// /// Entries are yielded in order of `.text` section offset. /// /// Some entries are missing a Wasm binary offset. This is for code that is /// not associated with any single location in the Wasm binary, or for when /// source information was optimized away. /// /// Not every module has an address map, since address map generation can be /// turned off on `Config`. /// /// There is not an entry for every `.text` section offset. Every offset /// after an entry's offset, but before the next entry's offset, is /// considered to map to the same Wasm binary offset as the original /// entry. For example, the address map will not contain the following /// sequence of entries: /// /// ```ignore /// [ /// // ... /// (10, Some(42)), /// (11, Some(42)), /// (12, Some(42)), /// (13, Some(43)), /// // ... /// ] /// ``` /// /// Instead, it will drop the entries for offsets `11` and `12` since they /// are the same as the entry for offset `10`: /// /// ```ignore /// [ /// // ... /// (10, Some(42)), /// (13, Some(43)), /// // ... /// ] /// ``` pub fn address_map<'a>(&'a self) -> Option)> + 'a> { Some( wasmtime_environ::iterate_address_map( self.code_object().code_memory().address_map_data(), )? .map(|(offset, file_pos)| (offset as usize, file_pos.file_offset())), ) } /// Get this module's code object's `.text` section, containing its compiled /// executable code. pub fn text(&self) -> &[u8] { self.code_object().code_memory().text() } /// Get information about functions in this module's `.text` section: their /// index, name, and offset+length. /// /// Results are yielded in a ModuleFunction struct. pub fn functions<'a>(&'a self) -> impl ExactSizeIterator + 'a { let module = self.compiled_module(); module.finished_functions().map(|(idx, _)| { let loc = module.func_loc(idx); let idx = module.module().func_index(idx); ModuleFunction { index: idx, name: module.func_name(idx).map(|n| n.to_string()), offset: loc.start as usize, len: loc.length as usize, } }) } pub(crate) fn id(&self) -> CompiledModuleId { self.inner.module.unique_id() } pub(crate) fn offsets(&self) -> &VMOffsets { &self.inner.offsets } /// Return the address, in memory, of the trampoline that allows Wasm to /// call a array function of the given signature. pub(crate) fn wasm_to_array_trampoline( &self, signature: VMSharedTypeIndex, ) -> Option> { log::trace!("Looking up trampoline for {signature:?}"); let trampoline_shared_ty = self.inner.engine.signatures().trampoline_type(signature); let trampoline_module_ty = self .inner .code .signatures() .trampoline_type(trampoline_shared_ty)?; debug_assert!(self .inner .engine .signatures() .borrow( self.inner .code .signatures() .shared_type(trampoline_module_ty) .unwrap() ) .unwrap() .unwrap_func() .is_trampoline_type()); let ptr = self .compiled_module() .wasm_to_array_trampoline(trampoline_module_ty) .as_ptr() .cast::() .cast_mut(); Some(NonNull::new(ptr).unwrap()) } pub(crate) fn memory_images(&self) -> Result> { let images = self .inner .memory_images .get_or_try_init(|| memory_images(&self.inner.engine, &self.inner.module))? .as_ref(); Ok(images) } /// Lookup the stack map at a program counter value. pub(crate) fn lookup_stack_map(&self, pc: usize) -> Option<&wasmtime_environ::StackMap> { let text_offset = pc - self.inner.module.text().as_ptr() as usize; let (index, func_offset) = self.inner.module.func_by_text_offset(text_offset)?; let info = self.inner.module.wasm_func_info(index); // Do a binary search to find the stack map for the given offset. let index = match info .stack_maps .binary_search_by_key(&func_offset, |i| i.code_offset) { // Found it. Ok(i) => i, // No stack map associated with this PC. // // Because we know we are in Wasm code, and we must be at some kind // of call/safepoint, then the Cranelift backend must have avoided // emitting a stack map for this location because no refs were live. Err(_) => return None, }; Some(&info.stack_maps[index].stack_map) } } /// Describes a function for a given module. pub struct ModuleFunction { pub index: wasmtime_environ::FuncIndex, pub name: Option, pub offset: usize, pub len: usize, } impl Drop for ModuleInner { fn drop(&mut self) { // When a `Module` is being dropped that means that it's no longer // present in any `Store` and it's additionally not longer held by any // embedder. Take this opportunity to purge any lingering instantiations // within a pooling instance allocator, if applicable. self.engine .allocator() .purge_module(self.module.unique_id()); } } /// Describes the location of an export in a module. #[derive(Copy, Clone)] pub struct ModuleExport { /// The module that this export is defined in. pub(crate) module: CompiledModuleId, /// A raw index into the wasm module. pub(crate) entity: EntityIndex, /// The index of the export name. pub(crate) export_name_index: usize, } fn _assert_send_sync() { fn _assert() {} _assert::(); } /// Helper method to construct a `ModuleMemoryImages` for an associated /// `CompiledModule`. fn memory_images(engine: &Engine, module: &CompiledModule) -> Result> { // If initialization via copy-on-write is explicitly disabled in // configuration then this path is skipped entirely. if !engine.tunables().memory_init_cow { return Ok(None); } // ... otherwise logic is delegated to the `ModuleMemoryImages::new` // constructor. let mmap = if engine.config().force_memory_init_memfd { None } else { Some(module.mmap()) }; ModuleMemoryImages::new(module.module(), module.code_memory().wasm_data(), mmap) } #[cfg(test)] mod tests { use crate::{Engine, Module}; use wasmtime_environ::MemoryInitialization; #[test] fn cow_on_by_default() { let engine = Engine::default(); let module = Module::new( &engine, r#" (module (memory 1) (data (i32.const 100) "abcd") ) "#, ) .unwrap(); let init = &module.env_module().memory_initialization; assert!(matches!(init, MemoryInitialization::Static { .. })); } }