module Sequel class Dataset # The Dataset SQL module implements all the dataset methods concerned with # generating SQL statements for retrieving and manipulating records. module SQL # Returns a valid SQL fieldname as a string. Field names specified as # symbols can include double underscores to denote a dot separator, e.g. # :posts__id will be converted into posts.id. def field_name(field) field.is_a?(Symbol) ? field.to_field_name : field end QUALIFIED_REGEXP = /(.*)\.(.*)/.freeze # Returns a qualified field name (including a table name) if the field # name isn't already qualified. def qualified_field_name(field, table) fn = field_name(field) fn =~ QUALIFIED_REGEXP ? fn : "#{table}.#{fn}" end WILDCARD = '*'.freeze COMMA_SEPARATOR = ", ".freeze # Converts an array of field names into a comma seperated string of # field names. If the array is empty, a wildcard (*) is returned. def field_list(fields) if fields.empty? WILDCARD else fields.map {|i| field_name(i)}.join(COMMA_SEPARATOR) end end # Converts an array of sources names into into a comma separated list. def source_list(source) if source.nil? || source.empty? raise SequelError, 'No source specified for query' end source.map {|i| i.is_a?(Dataset) ? i.to_table_reference : i}. join(COMMA_SEPARATOR) end NULL = "NULL".freeze TIMESTAMP_FORMAT = "TIMESTAMP '%Y-%m-%d %H:%M:%S'".freeze DATE_FORMAT = "DATE '%Y-%m-%d'".freeze # Returns a literal representation of a value to be used as part # of an SQL expression. The stock implementation supports literalization # of String (with proper escaping to prevent SQL injections), numbers, # Symbol (as field references), Array (as a list of literalized values), # Time (as an SQL TIMESTAMP), Date (as an SQL DATE), Dataset (as a # subquery) and nil (AS NULL). # # dataset.literal("abc'def") #=> "'abc''def'" # dataset.literal(:items__id) #=> "items.id" # dataset.literal([1, 2, 3]) => "(1, 2, 3)" # dataset.literal(DB[:items]) => "(SELECT * FROM items)" # # If an unsupported object is given, an exception is raised. def literal(v) case v when ExpressionString: v when String: "'#{v.gsub(/'/, "''")}'" when Integer, Float: v.to_s when NilClass: NULL when Symbol: v.to_field_name when Array: v.empty? ? NULL : v.map {|i| literal(i)}.join(COMMA_SEPARATOR) when Time: v.strftime(TIMESTAMP_FORMAT) when Date: v.strftime(DATE_FORMAT) when Dataset: "(#{v.sql})" else raise SequelError, "can't express #{v.inspect} as a SQL literal" end end AND_SEPARATOR = " AND ".freeze # Formats an equality expression involving a left value and a right value. # Equality expressions differ according to the class of the right value. # The stock implementation supports Range (inclusive and exclusive), Array # (as a list of values to compare against), Dataset (as a subquery to # compare against), or a regular value. # # dataset.format_eq_expression('id', 1..20) #=> # "(id >= 1 AND id <= 20)" # dataset.format_eq_expression('id', [3,6,10]) #=> # "(id IN (3, 6, 10))" # dataset.format_eq_expression('id', DB[:items].select(:id)) #=> # "(id IN (SELECT id FROM items))" # dataset.format_eq_expression('id', nil) #=> # "(id IS NULL)" # dataset.format_eq_expression('id', 3) #=> # "(id = 3)" def format_eq_expression(left, right) case right when Range: right.exclude_end? ? \ "(#{left} >= #{literal(right.begin)} AND #{left} < #{literal(right.end)})" : \ "(#{left} >= #{literal(right.begin)} AND #{left} <= #{literal(right.end)})" when Array: "(#{left} IN (#{literal(right)}))" when Dataset: "(#{left} IN (#{right.sql}))" when NilClass: "(#{left} IS NULL)" else "(#{left} = #{literal(right)})" end end # Formats an expression comprising a left value, a binary operator and a # right value. The supported operators are :eql (=), :not (!=), :lt (<), # :lte (<=), :gt (>), :gte (>=) and :like (LIKE operator). Examples: # # dataset.format_expression('price', :gte, 100) #=> "(price >= 100)" # dataset.format_expression('id', :not, 30) #=> "NOT (id = 30)" # dataset.format_expression('name', :like, 'abc%') #=> # "(name LIKE 'abc%')" # # If an unsupported operator is given, an exception is raised. def format_expression(left, op, right) left = field_name(left) case op when :eql: format_eq_expression(left, right) when :not: "NOT #{format_eq_expression(left, right)}" when :lt: "(#{left} < #{literal(right)})" when :lte: "(#{left} <= #{literal(right)})" when :gt: "(#{left} > #{literal(right)})" when :gte: "(#{left} >= #{literal(right)})" when :like: "(#{left} LIKE #{literal(right)})" else raise SequelError, "Invalid operator specified: #{op}" end end QUESTION_MARK = '?'.freeze # Formats a where clause. If parenthesize is true, then the whole # generated clause will be enclosed in a set of parentheses. def expression_list(where, parenthesize = false) case where when Hash: parenthesize = false if where.size == 1 fmt = where.map {|i| format_expression(i[0], :eql, i[1])}. join(AND_SEPARATOR) when Array: fmt = where.shift.gsub(QUESTION_MARK) {literal(where.shift)} when Proc: fmt = where.to_expressions.map {|e| format_expression(e.left, e.op, e.right)}. join(AND_SEPARATOR) else # if the expression is compound, it should be parenthesized in order for # things to be predictable (when using #or and #and.) parenthesize |= where =~ /\).+\(/ fmt = where end parenthesize ? "(#{fmt})" : fmt end # Returns a copy of the dataset with the source changed. def from(*source) clone_merge(:from => source) end # Returns a copy of the dataset with the selected fields changed. def select(*fields) clone_merge(:select => fields) end # Returns a copy of the dataset with the distinct option. def uniq clone_merge(:distinct => true) end alias distinct uniq # Returns a copy of the dataset with the order changed. def order(*order) clone_merge(:order => order) end # Returns a copy of the dataset with the order reversed. If no order is # given, the existing order is inverted. def reverse_order(*order) order(invert_order(order.empty? ? @opts[:order] : order)) end DESC_ORDER_REGEXP = /(.*)\sDESC/.freeze # Inverts the given order by breaking it into a list of field references # and inverting them. # # dataset.invert_order('id DESC') #=> "id" # dataset.invert_order('category, price DESC') #=> # "category DESC, price" def invert_order(order) new_order = [] order.each do |f| f.to_s.split(',').map do |p| p.strip! new_order << (p =~ DESC_ORDER_REGEXP ? $1 : p.to_sym.DESC) end end new_order end # Returns a copy of the dataset with the results grouped by the value of # the given fields def group(*fields) clone_merge(:group => fields) end # Returns a copy of the dataset with the given conditions imposed upon it. # If the query has been grouped, then the conditions are imposed in the # HAVING clause. If not, then they are imposed in the WHERE clause. Filter # accepts a Hash (formated into a list of equality expressions), an Array # (formatted ala ActiveRecord conditions), a String (taken literally), or # a block that is converted into expressions. # # dataset.filter(:id => 3).sql #=> # "SELECT * FROM items WHERE (id = 3)" # dataset.filter('price < ?', 100).sql #=> # "SELECT * FROM items WHERE price < 100" # dataset.filter('price < 100').sql #=> # "SELECT * FROM items WHERE price < 100" # dataset.filter {price < 100}.sql #=> # "SELECT * FROM items WHERE (price < 100)" # # Multiple filter calls can be chained for scoping: # # software = dataset.filter(:category => 'software') # software.filter {price < 100}.sql #=> # "SELECT * FROM items WHERE (category = 'software') AND (price < 100)" def filter(*cond, &block) clause = (@opts[:group] ? :having : :where) cond = cond.first if cond.size == 1 parenthesize = !(cond.is_a?(Hash) || cond.is_a?(Array)) filter = cond.is_a?(Hash) && cond if @opts[clause] if filter && cond.is_a?(Hash) filter end filter = l = expression_list(@opts[clause]) r = expression_list(block || cond, parenthesize) clone_merge(clause => "#{l} AND #{r}") else clone_merge(:filter => cond, clause => expression_list(block || cond)) end end # Adds an alternate filter to an existing filter using OR. If no filter # exists an error is raised. def or(*cond, &block) clause = (@opts[:group] ? :having : :where) cond = cond.first if cond.size == 1 parenthesize = !(cond.is_a?(Hash) || cond.is_a?(Array)) if @opts[clause] l = expression_list(@opts[clause]) r = expression_list(block || cond, parenthesize) clone_merge(clause => "#{l} OR #{r}") else raise SequelError, "No existing filter found." end end # Adds an further filter to an existing filter using AND. If no filter # exists an error is raised. This method is identical to #filter except # it expects an existing filter. def and(*cond, &block) clause = (@opts[:group] ? :having : :where) unless @opts[clause] raise SequelError, "No existing filter found." end filter(*cond, &block) end # Performs the inverse of Dataset#filter. # # dataset.exclude(:category => 'software').sql #=> # "SELECT * FROM items WHERE NOT (category = 'software')" def exclude(*cond, &block) clause = (@opts[:group] ? :having : :where) cond = cond.first if cond.size == 1 parenthesize = !(cond.is_a?(Hash) || cond.is_a?(Array)) if @opts[clause] l = expression_list(@opts[clause]) r = expression_list(block || cond, parenthesize) cond = "#{l} AND NOT #{r}" else cond = "NOT #{expression_list(block || cond, true)}" end clone_merge(clause => cond) end # Returns a copy of the dataset with the where conditions changed. Raises # if the dataset has been grouped. See also #filter. def where(*cond, &block) if @opts[:group] raise SequelError, "Can't specify a WHERE clause once the dataset has been grouped" else filter(*cond, &block) end end # Returns a copy of the dataset with the having conditions changed. Raises # if the dataset has not been grouped. See also #filter def having(*cond, &block) unless @opts[:group] raise SequelError, "Can only specify a HAVING clause on a grouped dataset" else filter(*cond, &block) end end # Adds a UNION clause using a second dataset object. If all is true the # clause used is UNION ALL, which may return duplicate rows. def union(dataset, all = false) clone_merge(:union => dataset, :union_all => all) end # Adds an INTERSECT clause using a second dataset object. If all is true # the clause used is INTERSECT ALL, which may return duplicate rows. def intersect(dataset, all = false) clone_merge(:intersect => dataset, :intersect_all => all) end # Adds an EXCEPT clause using a second dataset object. If all is true the # clause used is EXCEPT ALL, which may return duplicate rows. def except(dataset, all = false) clone_merge(:except => dataset, :except_all => all) end JOIN_TYPES = { :left_outer => 'LEFT OUTER JOIN'.freeze, :right_outer => 'RIGHT OUTER JOIN'.freeze, :full_outer => 'FULL OUTER JOIN'.freeze, :inner => 'INNER JOIN'.freeze } # Returns a join clause based on the specified join type and condition. def join_expr(type, table, expr) join_type = JOIN_TYPES[type || :inner] unless join_type raise SequelError, "Invalid join type: #{type}" end join_expr = expr.map do |k, v| l = qualified_field_name(k, table) r = qualified_field_name(v, @opts[:last_joined_table] || @opts[:from]) "(#{l} = #{r})" end.join(AND_SEPARATOR) " #{join_type} #{table} ON #{join_expr}" end # Returns a joined dataset with the specified join type and condition. def join_table(type, table, expr) unless expr.is_a?(Hash) expr = {expr => :id} end clause = join_expr(type, table, expr) join = @opts[:join] ? @opts[:join] + clause : clause clone_merge(:join => join, :last_joined_table => table) end # Returns a LEFT OUTER joined dataset. def left_outer_join(table, expr); join_table(:left_outer, table, expr); end # Returns a RIGHT OUTER joined dataset. def right_outer_join(table, expr); join_table(:right_outer, table, expr); end # Returns an OUTER joined dataset. def full_outer_join(table, expr); join_table(:full_outer, table, expr); end # Returns an INNER joined dataset. def inner_join(table, expr); join_table(:inner, table, expr); end alias join inner_join # Inserts multiple values. If a block is given it is invoked for each # item in the given array before inserting it. def insert_multiple(array, &block) if block array.each {|i| insert(block[i])} else array.each {|i| insert(i)} end end # Formats a SELECT statement using the given options and the dataset # options. def select_sql(opts = nil) opts = opts ? @opts.merge(opts) : @opts fields = opts[:select] select_fields = fields ? field_list(fields) : WILDCARD select_source = source_list(opts[:from]) sql = opts[:distinct] ? \ "SELECT DISTINCT #{select_fields} FROM #{select_source}" : \ "SELECT #{select_fields} FROM #{select_source}" if join = opts[:join] sql << join end if where = opts[:where] sql << " WHERE #{where}" end if group = opts[:group] sql << " GROUP BY #{field_list(group)}" end if order = opts[:order] sql << " ORDER BY #{field_list(order)}" end if having = opts[:having] sql << " HAVING #{having}" end if limit = opts[:limit] sql << " LIMIT #{limit}" if offset = opts[:offset] sql << " OFFSET #{offset}" end end if union = opts[:union] sql << (opts[:union_all] ? \ " UNION ALL #{union.sql}" : " UNION #{union.sql}") elsif intersect = opts[:intersect] sql << (opts[:intersect_all] ? \ " INTERSECT ALL #{intersect.sql}" : " INTERSECT #{intersect.sql}") elsif except = opts[:except] sql << (opts[:except_all] ? \ " EXCEPT ALL #{except.sql}" : " EXCEPT #{except.sql}") end sql end alias sql select_sql # Formats an INSERT statement using the given values. If a hash is given, # the resulting statement includes field names. If no values are given, # the resulting statement includes a DEFAULT VALUES clause. # # dataset.insert_sql() #=> 'INSERT INTO items DEFAULT VALUES' # dataset.insert_sql(1,2,3) #=> 'INSERT INTO items VALUES (1, 2, 3)' # dataset.insert_sql(:a => 1, :b => 2) #=> # 'INSERT INTO items (a, b) VALUES (1, 2)' def insert_sql(*values) if values.empty? "INSERT INTO #{@opts[:from]} DEFAULT VALUES" elsif (values.size == 1) && values[0].is_a?(Hash) field_list = [] value_list = [] values[0].each do |k, v| field_list << field_name(k) value_list << literal(v) end fl = field_list.join(COMMA_SEPARATOR) vl = value_list.join(COMMA_SEPARATOR) "INSERT INTO #{@opts[:from]} (#{fl}) VALUES (#{vl})" else "INSERT INTO #{@opts[:from]} VALUES (#{literal(values)})" end end # Formats an UPDATE statement using the given values. # # dataset.update_sql(:price => 100, :category => 'software') #=> # "UPDATE items SET price = 100, category = 'software'" def update_sql(values, opts = nil) opts = opts ? @opts.merge(opts) : @opts if opts[:group] raise SequelError, "Can't update a grouped dataset" elsif (opts[:from].size > 1) or opts[:join] raise SequelError, "Can't update a joined dataset" end set_list = values.map {|k, v| "#{field_name(k)} = #{literal(v)}"}. join(COMMA_SEPARATOR) sql = "UPDATE #{@opts[:from]} SET #{set_list}" if where = opts[:where] sql << " WHERE #{where}" end sql end # Formats a DELETE statement using the given options and dataset options. # # dataset.filter {price >= 100}.delete_sql #=> # "DELETE FROM items WHERE (price >= 100)" def delete_sql(opts = nil) opts = opts ? @opts.merge(opts) : @opts if opts[:group] raise SequelError, "Can't delete from a grouped dataset" elsif opts[:from].is_a?(Array) && opts[:from].size > 1 raise SequelError, "Can't delete from a joined dataset" end sql = "DELETE FROM #{opts[:from]}" if where = opts[:where] sql << " WHERE #{where}" end sql end # Returns a table reference for use in the FROM clause. If the dataset has # only a :from option refering to a single table, only the table name is # returned. Otherwise a subquery is returned. def to_table_reference if opts.keys == [:from] && opts[:from].size == 1 opts[:from].first.to_s else "(#{sql})" end end # Returns an EXISTS clause for the dataset. # # dataset.exists #=> "EXISTS (SELECT 1 FROM items)" def exists(opts = nil) "EXISTS (#{sql({:select => [1]}.merge(opts || {}))})" end # If given an integer, the dataset will contain only the first l results. # If given a range, it will contain only those at offsets within that # range. If a second argument is given, it is used as an offset. def limit(l, o = nil) if l.is_a? Range lim = (l.exclude_end? ? l.last - l.first : l.last + 1 - l.first) clone_merge(:limit => lim, :offset=>l.first) elsif o clone_merge(:limit => l, :offset => o) else clone_merge(:limit => l) end end SELECT_COUNT = {:select => ["COUNT(*)"], :order => nil}.freeze # Returns the number of records in the dataset. def count single_value(SELECT_COUNT).to_i end end end end