# frozen_string_literal: true require 'rumale/base/classifier' require 'rumale/probabilistic_output' require 'rumale/validation' require_relative 'sgd_estimator' module Rumale module LinearModel # SGDClassifier is a class that implements linear classifier with stochastic gradient descent optimization. # # @example # require 'rumale/linear_model/sgd_classifier' # # estimator = # Rumale::LinearModel::SGDClassifier.new(loss: 'hinge', reg_param: 1.0, max_iter: 1000, batch_size: 50, random_seed: 1) # estimator.fit(training_samples, traininig_labels) # results = estimator.predict(testing_samples) # # *Reference* # - Shalev-Shwartz, S., and Singer, Y., "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007. # - Tsuruoka, Y., Tsujii, J., and Ananiadou, S., "Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty," Proc. ACL'09, pp. 477--485, 2009. # - Bottou, L., "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010. class SGDClassifier < Rumale::LinearModel::SGDEstimator # rubocop:disable Metrics/ClassLength include Rumale::Base::Classifier # Return the class labels. # @return [Numo::Int32] (shape: [n_classes]) attr_reader :classes # Return the random generator for performing random sampling. # @return [Random] attr_reader :rng # Create a new linear classifier with stochastic gradient descent optimization. # # @param loss [String] The loss function to be used ('hinge' and 'log_loss'). # @param learning_rate [Float] The initial value of learning rate. # The learning rate decreases as the iteration proceeds according to the equation: learning_rate / (1 + decay * t). # @param decay [Float] The smoothing parameter for decreasing learning rate as the iteration proceeds. # If nil is given, the decay sets to 'reg_param * learning_rate'. # @param momentum [Float] The momentum factor. # @param penalty [String] The regularization type to be used ('l1', 'l2', and 'elasticnet'). # @param l1_ratio [Float] The elastic-net type regularization mixing parameter. # If penalty set to 'l2' or 'l1', this parameter is ignored. # If l1_ratio = 1, the regularization is similar to Lasso. # If l1_ratio = 0, the regularization is similar to Ridge. # If 0 < l1_ratio < 1, the regularization is a combination of L1 and L2. # @param reg_param [Float] The regularization parameter. # @param fit_bias [Boolean] The flag indicating whether to fit the bias term. # @param bias_scale [Float] The scale of the bias term. # @param max_iter [Integer] The maximum number of epochs that indicates # how many times the whole data is given to the training process. # @param batch_size [Integer] The size of the mini batches. # @param tol [Float] The tolerance of loss for terminating optimization. # @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel. # If nil is given, the methods do not execute in parallel. # If zero or less is given, it becomes equal to the number of processors. # This parameter is ignored if the Parallel gem is not loaded. # @param verbose [Boolean] The flag indicating whether to output loss during iteration. # @param random_seed [Integer] The seed value using to initialize the random generator. def initialize(loss: 'hinge', learning_rate: 0.01, decay: nil, momentum: 0.9, penalty: 'l2', reg_param: 1.0, l1_ratio: 0.5, fit_bias: true, bias_scale: 1.0, max_iter: 1000, batch_size: 50, tol: 1e-4, n_jobs: nil, verbose: false, random_seed: nil) super() @params.merge!( loss: loss, learning_rate: learning_rate, decay: decay, momentum: momentum, penalty: penalty, reg_param: reg_param, l1_ratio: l1_ratio, fit_bias: fit_bias, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size, tol: tol, n_jobs: n_jobs, verbose: verbose, random_seed: random_seed ) @params[:decay] ||= @params[:reg_param] * @params[:learning_rate] @params[:random_seed] ||= srand @rng = Random.new(@params[:random_seed]) @penalty_type = @params[:penalty] @loss_func = case @params[:loss] when Rumale::LinearModel::Loss::HingeLoss::NAME Rumale::LinearModel::Loss::HingeLoss.new when Rumale::LinearModel::Loss::LogLoss::NAME Rumale::LinearModel::Loss::LogLoss.new else raise ArgumentError, "given loss '#{loss}' is not supported." end end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model. # @return [SGDClassifier] The learned classifier itself. def fit(x, y) x = Rumale::Validation.check_convert_sample_array(x) y = Rumale::Validation.check_convert_label_array(y) Rumale::Validation.check_sample_size(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] send("fit_#{@loss_func.name}", x, y) self end # Calculate confidence scores for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample. def decision_function(x) x = ::Rumale::Validation.check_convert_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end # Predict class labels for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample. def predict(x) x = ::Rumale::Validation.check_convert_sample_array(x) send("predict_#{@loss_func.name}", x) end # Predict probability for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample. def predict_proba(x) x = ::Rumale::Validation.check_convert_sample_array(x) send("predict_proba_#{@loss_func.name}", x) end private def fit_hinge(x, y) if multiclass_problem? n_classes = @classes.size n_features = x.shape[1] @weight_vec = Numo::DFloat.zeros(n_classes, n_features) @bias_term = Numo::DFloat.zeros(n_classes) @prob_param = Numo::DFloat.zeros(n_classes, 2) models = if enable_parallel? parallel_map(n_classes) do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 w, b = partial_fit(x, bin_y) prb = Rumale::ProbabilisticOutput.fit_sigmoid(x.dot(w.transpose) + b, bin_y) [w, b, prb] end else Array.new(n_classes) do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 w, b = partial_fit(x, bin_y) prb = Rumale::ProbabilisticOutput.fit_sigmoid(x.dot(w.transpose) + b, bin_y) [w, b, prb] end end # store model. models.each_with_index { |model, n| @weight_vec[n, true], @bias_term[n], @prob_param[n, true] = model } else negative_label = @classes[0] bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1 @weight_vec, @bias_term = partial_fit(x, bin_y) @prob_param = Rumale::ProbabilisticOutput.fit_sigmoid(x.dot(@weight_vec.transpose) + @bias_term, bin_y) end end def fit_log_loss(x, y) if multiclass_problem? n_classes = @classes.size n_features = x.shape[1] @weight_vec = Numo::DFloat.zeros(n_classes, n_features) @bias_term = Numo::DFloat.zeros(n_classes) if enable_parallel? models = parallel_map(n_classes) do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 partial_fit(x, bin_y) end n_classes.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] } else n_classes.times do |n| bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1 @weight_vec[n, true], @bias_term[n] = partial_fit(x, bin_y) end end else negative_label = @classes[0] bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1 @weight_vec, @bias_term = partial_fit(x, bin_y) end end def predict_proba_hinge(x) if multiclass_problem? probs = 1.0 / (Numo::NMath.exp(@prob_param[true, 0] * decision_function(x) + @prob_param[true, 1]) + 1.0) (probs.transpose / probs.sum(axis: 1)).transpose.dup else n_samples = x.shape[0] probs = Numo::DFloat.zeros(n_samples, 2) probs[true, 1] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0) probs[true, 0] = 1.0 - probs[true, 1] probs end end def predict_proba_log_loss(x) proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0) return (proba.transpose / proba.sum(axis: 1)).transpose.dup if multiclass_problem? n_samples = x.shape[0] probs = Numo::DFloat.zeros(n_samples, 2) probs[true, 1] = proba probs[true, 0] = 1.0 - proba probs end def predict_hinge(x) n_samples = x.shape[0] predicted = if multiclass_problem? decision_values = decision_function(x) if enable_parallel? parallel_map(n_samples) { |n| @classes[decision_values[n, true].max_index] } else Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] } end else decision_values = decision_function(x).ge(0.0).to_a Array.new(n_samples) { |n| @classes[decision_values[n]] } end Numo::Int32.asarray(predicted) end def predict_log_loss(x) n_samples = x.shape[0] decision_values = predict_proba_log_loss(x) predicted = if enable_parallel? parallel_map(n_samples) { |n| @classes[decision_values[n, true].max_index] } else Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] } end Numo::Int32.asarray(predicted) end def multiclass_problem? @classes.size > 2 end end end end