// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_CODE_STUBS_H_ #define V8_CODE_STUBS_H_ #include "globals.h" namespace v8 { namespace internal { // List of code stubs used on all platforms. The order in this list is important // as only the stubs up to and including Instanceof allows nested stub calls. #define CODE_STUB_LIST_ALL_PLATFORMS(V) \ V(CallFunction) \ V(GenericBinaryOp) \ V(TypeRecordingBinaryOp) \ V(StringAdd) \ V(SubString) \ V(StringCompare) \ V(SmiOp) \ V(Compare) \ V(CompareIC) \ V(MathPow) \ V(TranscendentalCache) \ V(Instanceof) \ V(ConvertToDouble) \ V(WriteInt32ToHeapNumber) \ V(IntegerMod) \ V(StackCheck) \ V(FastNewClosure) \ V(FastNewContext) \ V(FastCloneShallowArray) \ V(GenericUnaryOp) \ V(RevertToNumber) \ V(ToBoolean) \ V(ToNumber) \ V(CounterOp) \ V(ArgumentsAccess) \ V(RegExpExec) \ V(RegExpConstructResult) \ V(NumberToString) \ V(CEntry) \ V(JSEntry) \ V(DebuggerStatement) // List of code stubs only used on ARM platforms. #ifdef V8_TARGET_ARCH_ARM #define CODE_STUB_LIST_ARM(V) \ V(GetProperty) \ V(SetProperty) \ V(InvokeBuiltin) \ V(RegExpCEntry) \ V(DirectCEntry) #else #define CODE_STUB_LIST_ARM(V) #endif // List of code stubs only used on MIPS platforms. #ifdef V8_TARGET_ARCH_MIPS #define CODE_STUB_LIST_MIPS(V) \ V(RegExpCEntry) #else #define CODE_STUB_LIST_MIPS(V) #endif // Combined list of code stubs. #define CODE_STUB_LIST(V) \ CODE_STUB_LIST_ALL_PLATFORMS(V) \ CODE_STUB_LIST_ARM(V) \ CODE_STUB_LIST_MIPS(V) // Mode to overwrite BinaryExpression values. enum OverwriteMode { NO_OVERWRITE, OVERWRITE_LEFT, OVERWRITE_RIGHT }; enum UnaryOverwriteMode { UNARY_OVERWRITE, UNARY_NO_OVERWRITE }; // Stub is base classes of all stubs. class CodeStub BASE_EMBEDDED { public: enum Major { #define DEF_ENUM(name) name, CODE_STUB_LIST(DEF_ENUM) #undef DEF_ENUM NoCache, // marker for stubs that do custom caching NUMBER_OF_IDS }; // Retrieve the code for the stub. Generate the code if needed. Handle GetCode(); // Retrieve the code for the stub if already generated. Do not // generate the code if not already generated and instead return a // retry after GC Failure object. MUST_USE_RESULT MaybeObject* TryGetCode(); static Major MajorKeyFromKey(uint32_t key) { return static_cast(MajorKeyBits::decode(key)); } static int MinorKeyFromKey(uint32_t key) { return MinorKeyBits::decode(key); } // Gets the major key from a code object that is a code stub or binary op IC. static Major GetMajorKey(Code* code_stub) { return static_cast(code_stub->major_key()); } static const char* MajorName(Major major_key, bool allow_unknown_keys); virtual ~CodeStub() {} protected: static const int kMajorBits = 6; static const int kMinorBits = kBitsPerInt - kSmiTagSize - kMajorBits; private: // Lookup the code in the (possibly custom) cache. bool FindCodeInCache(Code** code_out); // Nonvirtual wrapper around the stub-specific Generate function. Call // this function to set up the macro assembler and generate the code. void GenerateCode(MacroAssembler* masm); // Generates the assembler code for the stub. virtual void Generate(MacroAssembler* masm) = 0; // Perform bookkeeping required after code generation when stub code is // initially generated. void RecordCodeGeneration(Code* code, MacroAssembler* masm); // Finish the code object after it has been generated. virtual void FinishCode(Code* code) { } // Returns information for computing the number key. virtual Major MajorKey() = 0; virtual int MinorKey() = 0; // The CallFunctionStub needs to override this so it can encode whether a // lazily generated function should be fully optimized or not. virtual InLoopFlag InLoop() { return NOT_IN_LOOP; } // GenericBinaryOpStub needs to override this. virtual int GetCodeKind(); // GenericBinaryOpStub needs to override this. virtual InlineCacheState GetICState() { return UNINITIALIZED; } // Returns a name for logging/debugging purposes. virtual const char* GetName() { return MajorName(MajorKey(), false); } // Returns whether the code generated for this stub needs to be allocated as // a fixed (non-moveable) code object. virtual bool NeedsImmovableCode() { return false; } #ifdef DEBUG virtual void Print() { PrintF("%s\n", GetName()); } #endif // Computes the key based on major and minor. uint32_t GetKey() { ASSERT(static_cast(MajorKey()) < NUMBER_OF_IDS); return MinorKeyBits::encode(MinorKey()) | MajorKeyBits::encode(MajorKey()); } bool AllowsStubCalls() { return MajorKey() <= Instanceof; } class MajorKeyBits: public BitField {}; class MinorKeyBits: public BitField {}; friend class BreakPointIterator; }; // Helper interface to prepare to/restore after making runtime calls. class RuntimeCallHelper { public: virtual ~RuntimeCallHelper() {} virtual void BeforeCall(MacroAssembler* masm) const = 0; virtual void AfterCall(MacroAssembler* masm) const = 0; protected: RuntimeCallHelper() {} private: DISALLOW_COPY_AND_ASSIGN(RuntimeCallHelper); }; } } // namespace v8::internal #if V8_TARGET_ARCH_IA32 #include "ia32/code-stubs-ia32.h" #elif V8_TARGET_ARCH_X64 #include "x64/code-stubs-x64.h" #elif V8_TARGET_ARCH_ARM #include "arm/code-stubs-arm.h" #elif V8_TARGET_ARCH_MIPS #include "mips/code-stubs-mips.h" #else #error Unsupported target architecture. #endif namespace v8 { namespace internal { // RuntimeCallHelper implementation used in stubs: enters/leaves a // newly created internal frame before/after the runtime call. class StubRuntimeCallHelper : public RuntimeCallHelper { public: StubRuntimeCallHelper() {} virtual void BeforeCall(MacroAssembler* masm) const; virtual void AfterCall(MacroAssembler* masm) const; }; // Trivial RuntimeCallHelper implementation. class NopRuntimeCallHelper : public RuntimeCallHelper { public: NopRuntimeCallHelper() {} virtual void BeforeCall(MacroAssembler* masm) const {} virtual void AfterCall(MacroAssembler* masm) const {} }; class StackCheckStub : public CodeStub { public: StackCheckStub() { } void Generate(MacroAssembler* masm); private: const char* GetName() { return "StackCheckStub"; } Major MajorKey() { return StackCheck; } int MinorKey() { return 0; } }; class ToNumberStub: public CodeStub { public: ToNumberStub() { } void Generate(MacroAssembler* masm); private: Major MajorKey() { return ToNumber; } int MinorKey() { return 0; } const char* GetName() { return "ToNumberStub"; } }; class FastNewClosureStub : public CodeStub { public: explicit FastNewClosureStub(StrictModeFlag strict_mode) : strict_mode_(strict_mode) { } void Generate(MacroAssembler* masm); private: const char* GetName() { return "FastNewClosureStub"; } Major MajorKey() { return FastNewClosure; } int MinorKey() { return strict_mode_; } StrictModeFlag strict_mode_; }; class FastNewContextStub : public CodeStub { public: static const int kMaximumSlots = 64; explicit FastNewContextStub(int slots) : slots_(slots) { ASSERT(slots_ > 0 && slots <= kMaximumSlots); } void Generate(MacroAssembler* masm); private: int slots_; const char* GetName() { return "FastNewContextStub"; } Major MajorKey() { return FastNewContext; } int MinorKey() { return slots_; } }; class FastCloneShallowArrayStub : public CodeStub { public: // Maximum length of copied elements array. static const int kMaximumClonedLength = 8; enum Mode { CLONE_ELEMENTS, COPY_ON_WRITE_ELEMENTS }; FastCloneShallowArrayStub(Mode mode, int length) : mode_(mode), length_((mode == COPY_ON_WRITE_ELEMENTS) ? 0 : length) { ASSERT(length_ >= 0); ASSERT(length_ <= kMaximumClonedLength); } void Generate(MacroAssembler* masm); private: Mode mode_; int length_; const char* GetName() { return "FastCloneShallowArrayStub"; } Major MajorKey() { return FastCloneShallowArray; } int MinorKey() { ASSERT(mode_ == 0 || mode_ == 1); return (length_ << 1) | mode_; } }; class InstanceofStub: public CodeStub { public: enum Flags { kNoFlags = 0, kArgsInRegisters = 1 << 0, kCallSiteInlineCheck = 1 << 1, kReturnTrueFalseObject = 1 << 2 }; explicit InstanceofStub(Flags flags) : flags_(flags), name_(NULL) { } static Register left(); static Register right(); void Generate(MacroAssembler* masm); private: Major MajorKey() { return Instanceof; } int MinorKey() { return static_cast(flags_); } bool HasArgsInRegisters() const { return (flags_ & kArgsInRegisters) != 0; } bool HasCallSiteInlineCheck() const { return (flags_ & kCallSiteInlineCheck) != 0; } bool ReturnTrueFalseObject() const { return (flags_ & kReturnTrueFalseObject) != 0; } const char* GetName(); Flags flags_; char* name_; }; enum NegativeZeroHandling { kStrictNegativeZero, kIgnoreNegativeZero }; enum UnaryOpFlags { NO_UNARY_FLAGS = 0, NO_UNARY_SMI_CODE_IN_STUB = 1 << 0 }; class GenericUnaryOpStub : public CodeStub { public: GenericUnaryOpStub(Token::Value op, UnaryOverwriteMode overwrite, UnaryOpFlags flags, NegativeZeroHandling negative_zero = kStrictNegativeZero) : op_(op), overwrite_(overwrite), include_smi_code_((flags & NO_UNARY_SMI_CODE_IN_STUB) == 0), negative_zero_(negative_zero) { } private: Token::Value op_; UnaryOverwriteMode overwrite_; bool include_smi_code_; NegativeZeroHandling negative_zero_; class OverwriteField: public BitField {}; class IncludeSmiCodeField: public BitField {}; class NegativeZeroField: public BitField {}; class OpField: public BitField {}; Major MajorKey() { return GenericUnaryOp; } int MinorKey() { return OpField::encode(op_) | OverwriteField::encode(overwrite_) | IncludeSmiCodeField::encode(include_smi_code_) | NegativeZeroField::encode(negative_zero_); } void Generate(MacroAssembler* masm); const char* GetName(); }; class MathPowStub: public CodeStub { public: MathPowStub() {} virtual void Generate(MacroAssembler* masm); private: virtual CodeStub::Major MajorKey() { return MathPow; } virtual int MinorKey() { return 0; } const char* GetName() { return "MathPowStub"; } }; class ICCompareStub: public CodeStub { public: ICCompareStub(Token::Value op, CompareIC::State state) : op_(op), state_(state) { ASSERT(Token::IsCompareOp(op)); } virtual void Generate(MacroAssembler* masm); private: class OpField: public BitField { }; class StateField: public BitField { }; virtual void FinishCode(Code* code) { code->set_compare_state(state_); } virtual CodeStub::Major MajorKey() { return CompareIC; } virtual int MinorKey(); virtual int GetCodeKind() { return Code::COMPARE_IC; } void GenerateSmis(MacroAssembler* masm); void GenerateHeapNumbers(MacroAssembler* masm); void GenerateObjects(MacroAssembler* masm); void GenerateMiss(MacroAssembler* masm); bool strict() const { return op_ == Token::EQ_STRICT; } Condition GetCondition() const { return CompareIC::ComputeCondition(op_); } Token::Value op_; CompareIC::State state_; }; // Flags that control the compare stub code generation. enum CompareFlags { NO_COMPARE_FLAGS = 0, NO_SMI_COMPARE_IN_STUB = 1 << 0, NO_NUMBER_COMPARE_IN_STUB = 1 << 1, CANT_BOTH_BE_NAN = 1 << 2 }; enum NaNInformation { kBothCouldBeNaN, kCantBothBeNaN }; class CompareStub: public CodeStub { public: CompareStub(Condition cc, bool strict, CompareFlags flags, Register lhs, Register rhs) : cc_(cc), strict_(strict), never_nan_nan_((flags & CANT_BOTH_BE_NAN) != 0), include_number_compare_((flags & NO_NUMBER_COMPARE_IN_STUB) == 0), include_smi_compare_((flags & NO_SMI_COMPARE_IN_STUB) == 0), lhs_(lhs), rhs_(rhs), name_(NULL) { } CompareStub(Condition cc, bool strict, CompareFlags flags) : cc_(cc), strict_(strict), never_nan_nan_((flags & CANT_BOTH_BE_NAN) != 0), include_number_compare_((flags & NO_NUMBER_COMPARE_IN_STUB) == 0), include_smi_compare_((flags & NO_SMI_COMPARE_IN_STUB) == 0), lhs_(no_reg), rhs_(no_reg), name_(NULL) { } void Generate(MacroAssembler* masm); private: Condition cc_; bool strict_; // Only used for 'equal' comparisons. Tells the stub that we already know // that at least one side of the comparison is not NaN. This allows the // stub to use object identity in the positive case. We ignore it when // generating the minor key for other comparisons to avoid creating more // stubs. bool never_nan_nan_; // Do generate the number comparison code in the stub. Stubs without number // comparison code is used when the number comparison has been inlined, and // the stub will be called if one of the operands is not a number. bool include_number_compare_; // Generate the comparison code for two smi operands in the stub. bool include_smi_compare_; // Register holding the left hand side of the comparison if the stub gives // a choice, no_reg otherwise. Register lhs_; // Register holding the right hand side of the comparison if the stub gives // a choice, no_reg otherwise. Register rhs_; // Encoding of the minor key in 16 bits. class StrictField: public BitField {}; class NeverNanNanField: public BitField {}; class IncludeNumberCompareField: public BitField {}; class IncludeSmiCompareField: public BitField {}; class RegisterField: public BitField {}; class ConditionField: public BitField {}; Major MajorKey() { return Compare; } int MinorKey(); virtual int GetCodeKind() { return Code::COMPARE_IC; } virtual void FinishCode(Code* code) { code->set_compare_state(CompareIC::GENERIC); } // Branch to the label if the given object isn't a symbol. void BranchIfNonSymbol(MacroAssembler* masm, Label* label, Register object, Register scratch); // Unfortunately you have to run without snapshots to see most of these // names in the profile since most compare stubs end up in the snapshot. char* name_; const char* GetName(); #ifdef DEBUG void Print() { PrintF("CompareStub (minor %d) (cc %d), (strict %s), " "(never_nan_nan %s), (smi_compare %s) (number_compare %s) ", MinorKey(), static_cast(cc_), strict_ ? "true" : "false", never_nan_nan_ ? "true" : "false", include_smi_compare_ ? "inluded" : "not included", include_number_compare_ ? "included" : "not included"); if (!lhs_.is(no_reg) && !rhs_.is(no_reg)) { PrintF("(lhs r%d), (rhs r%d)\n", lhs_.code(), rhs_.code()); } else { PrintF("\n"); } } #endif }; class CEntryStub : public CodeStub { public: explicit CEntryStub(int result_size) : result_size_(result_size), save_doubles_(false) { } void Generate(MacroAssembler* masm); void SaveDoubles() { save_doubles_ = true; } private: void GenerateCore(MacroAssembler* masm, Label* throw_normal_exception, Label* throw_termination_exception, Label* throw_out_of_memory_exception, bool do_gc, bool always_allocate_scope); void GenerateThrowTOS(MacroAssembler* masm); void GenerateThrowUncatchable(MacroAssembler* masm, UncatchableExceptionType type); // Number of pointers/values returned. const int result_size_; bool save_doubles_; Major MajorKey() { return CEntry; } int MinorKey(); bool NeedsImmovableCode(); const char* GetName() { return "CEntryStub"; } }; class JSEntryStub : public CodeStub { public: JSEntryStub() { } void Generate(MacroAssembler* masm) { GenerateBody(masm, false); } protected: void GenerateBody(MacroAssembler* masm, bool is_construct); private: Major MajorKey() { return JSEntry; } int MinorKey() { return 0; } const char* GetName() { return "JSEntryStub"; } }; class JSConstructEntryStub : public JSEntryStub { public: JSConstructEntryStub() { } void Generate(MacroAssembler* masm) { GenerateBody(masm, true); } private: int MinorKey() { return 1; } const char* GetName() { return "JSConstructEntryStub"; } }; class ArgumentsAccessStub: public CodeStub { public: enum Type { READ_ELEMENT, NEW_NON_STRICT, NEW_STRICT }; explicit ArgumentsAccessStub(Type type) : type_(type) { } private: Type type_; Major MajorKey() { return ArgumentsAccess; } int MinorKey() { return type_; } void Generate(MacroAssembler* masm); void GenerateReadElement(MacroAssembler* masm); void GenerateNewObject(MacroAssembler* masm); int GetArgumentsBoilerplateIndex() const { return (type_ == NEW_STRICT) ? Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX : Context::ARGUMENTS_BOILERPLATE_INDEX; } int GetArgumentsObjectSize() const { if (type_ == NEW_STRICT) return Heap::kArgumentsObjectSizeStrict; else return Heap::kArgumentsObjectSize; } const char* GetName() { return "ArgumentsAccessStub"; } #ifdef DEBUG void Print() { PrintF("ArgumentsAccessStub (type %d)\n", type_); } #endif }; class RegExpExecStub: public CodeStub { public: RegExpExecStub() { } private: Major MajorKey() { return RegExpExec; } int MinorKey() { return 0; } void Generate(MacroAssembler* masm); const char* GetName() { return "RegExpExecStub"; } #ifdef DEBUG void Print() { PrintF("RegExpExecStub\n"); } #endif }; class RegExpConstructResultStub: public CodeStub { public: RegExpConstructResultStub() { } private: Major MajorKey() { return RegExpConstructResult; } int MinorKey() { return 0; } void Generate(MacroAssembler* masm); const char* GetName() { return "RegExpConstructResultStub"; } #ifdef DEBUG void Print() { PrintF("RegExpConstructResultStub\n"); } #endif }; class CallFunctionStub: public CodeStub { public: CallFunctionStub(int argc, InLoopFlag in_loop, CallFunctionFlags flags) : argc_(argc), in_loop_(in_loop), flags_(flags) { } void Generate(MacroAssembler* masm); static int ExtractArgcFromMinorKey(int minor_key) { return ArgcBits::decode(minor_key); } private: int argc_; InLoopFlag in_loop_; CallFunctionFlags flags_; #ifdef DEBUG void Print() { PrintF("CallFunctionStub (args %d, in_loop %d, flags %d)\n", argc_, static_cast(in_loop_), static_cast(flags_)); } #endif // Minor key encoding in 32 bits with Bitfield . class InLoopBits: public BitField {}; class FlagBits: public BitField {}; class ArgcBits: public BitField {}; Major MajorKey() { return CallFunction; } int MinorKey() { // Encode the parameters in a unique 32 bit value. return InLoopBits::encode(in_loop_) | FlagBits::encode(flags_) | ArgcBits::encode(argc_); } InLoopFlag InLoop() { return in_loop_; } bool ReceiverMightBeValue() { return (flags_ & RECEIVER_MIGHT_BE_VALUE) != 0; } }; enum StringIndexFlags { // Accepts smis or heap numbers. STRING_INDEX_IS_NUMBER, // Accepts smis or heap numbers that are valid array indices // (ECMA-262 15.4). Invalid indices are reported as being out of // range. STRING_INDEX_IS_ARRAY_INDEX }; // Generates code implementing String.prototype.charCodeAt. // // Only supports the case when the receiver is a string and the index // is a number (smi or heap number) that is a valid index into the // string. Additional index constraints are specified by the // flags. Otherwise, bails out to the provided labels. // // Register usage: |object| may be changed to another string in a way // that doesn't affect charCodeAt/charAt semantics, |index| is // preserved, |scratch| and |result| are clobbered. class StringCharCodeAtGenerator { public: StringCharCodeAtGenerator(Register object, Register index, Register scratch, Register result, Label* receiver_not_string, Label* index_not_number, Label* index_out_of_range, StringIndexFlags index_flags) : object_(object), index_(index), scratch_(scratch), result_(result), receiver_not_string_(receiver_not_string), index_not_number_(index_not_number), index_out_of_range_(index_out_of_range), index_flags_(index_flags) { ASSERT(!scratch_.is(object_)); ASSERT(!scratch_.is(index_)); ASSERT(!scratch_.is(result_)); ASSERT(!result_.is(object_)); ASSERT(!result_.is(index_)); } // Generates the fast case code. On the fallthrough path |result| // register contains the result. void GenerateFast(MacroAssembler* masm); // Generates the slow case code. Must not be naturally // reachable. Expected to be put after a ret instruction (e.g., in // deferred code). Always jumps back to the fast case. void GenerateSlow(MacroAssembler* masm, const RuntimeCallHelper& call_helper); private: Register object_; Register index_; Register scratch_; Register result_; Label* receiver_not_string_; Label* index_not_number_; Label* index_out_of_range_; StringIndexFlags index_flags_; Label call_runtime_; Label index_not_smi_; Label got_smi_index_; Label exit_; DISALLOW_COPY_AND_ASSIGN(StringCharCodeAtGenerator); }; // Generates code for creating a one-char string from a char code. class StringCharFromCodeGenerator { public: StringCharFromCodeGenerator(Register code, Register result) : code_(code), result_(result) { ASSERT(!code_.is(result_)); } // Generates the fast case code. On the fallthrough path |result| // register contains the result. void GenerateFast(MacroAssembler* masm); // Generates the slow case code. Must not be naturally // reachable. Expected to be put after a ret instruction (e.g., in // deferred code). Always jumps back to the fast case. void GenerateSlow(MacroAssembler* masm, const RuntimeCallHelper& call_helper); private: Register code_; Register result_; Label slow_case_; Label exit_; DISALLOW_COPY_AND_ASSIGN(StringCharFromCodeGenerator); }; // Generates code implementing String.prototype.charAt. // // Only supports the case when the receiver is a string and the index // is a number (smi or heap number) that is a valid index into the // string. Additional index constraints are specified by the // flags. Otherwise, bails out to the provided labels. // // Register usage: |object| may be changed to another string in a way // that doesn't affect charCodeAt/charAt semantics, |index| is // preserved, |scratch1|, |scratch2|, and |result| are clobbered. class StringCharAtGenerator { public: StringCharAtGenerator(Register object, Register index, Register scratch1, Register scratch2, Register result, Label* receiver_not_string, Label* index_not_number, Label* index_out_of_range, StringIndexFlags index_flags) : char_code_at_generator_(object, index, scratch1, scratch2, receiver_not_string, index_not_number, index_out_of_range, index_flags), char_from_code_generator_(scratch2, result) {} // Generates the fast case code. On the fallthrough path |result| // register contains the result. void GenerateFast(MacroAssembler* masm); // Generates the slow case code. Must not be naturally // reachable. Expected to be put after a ret instruction (e.g., in // deferred code). Always jumps back to the fast case. void GenerateSlow(MacroAssembler* masm, const RuntimeCallHelper& call_helper); private: StringCharCodeAtGenerator char_code_at_generator_; StringCharFromCodeGenerator char_from_code_generator_; DISALLOW_COPY_AND_ASSIGN(StringCharAtGenerator); }; class AllowStubCallsScope { public: AllowStubCallsScope(MacroAssembler* masm, bool allow) : masm_(masm), previous_allow_(masm->allow_stub_calls()) { masm_->set_allow_stub_calls(allow); } ~AllowStubCallsScope() { masm_->set_allow_stub_calls(previous_allow_); } private: MacroAssembler* masm_; bool previous_allow_; DISALLOW_COPY_AND_ASSIGN(AllowStubCallsScope); }; } } // namespace v8::internal #endif // V8_CODE_STUBS_H_