# ******************************************************************************* # OpenStudio(R), Copyright (c) Alliance for Sustainable Energy, LLC. # See also https://openstudio.net/license # ******************************************************************************* # see the URL below for information on how to write OpenStudio measures # http://nrel.github.io/OpenStudio-user-documentation/measures/measure_writing_guide/ # start the measure class AddRooftopPV < OpenStudio::Measure::ModelMeasure require 'openstudio-standards' # human readable name def name return 'Add Rooftop PV' end # human readable description def description return 'This measure will create new shading surface geometry above the roof for each thermal zone inyour model where the surface azmith falls within the user specified range. Arguments are exposed for panel efficiency, inverter efficiency, and the fraction of each roof surface that has PV.' end # human readable description of modeling approach def modeler_description return 'The fraction of surface containing PV will not only set the PV properties, but will also change the transmittance value for the shading surface. This allows the measure to avoid attempting to layout the panels. Simple PV will be used to model the PV.' end # define the arguments that the user will input def arguments(model) args = OpenStudio::Measure::OSArgumentVector.new # set fraction_of_surface fraction_of_surface = OpenStudio::Measure::OSArgument.makeDoubleArgument('fraction_of_surface', true) fraction_of_surface.setDisplayName('Fraction of Surface Area with Active Solar Cells') fraction_of_surface.setUnits('fraction') fraction_of_surface.setDefaultValue(0.75) args << fraction_of_surface # set cell_efficiency cell_efficiency = OpenStudio::Measure::OSArgument.makeDoubleArgument('cell_efficiency', true) cell_efficiency.setDisplayName('Cell Efficiency') cell_efficiency.setUnits('fraction') cell_efficiency.setDefaultValue(0.18) args << cell_efficiency # set inverter_efficiency inverter_efficiency = OpenStudio::Measure::OSArgument.makeDoubleArgument('inverter_efficiency', true) inverter_efficiency.setDisplayName('Inverter Efficiency') inverter_efficiency.setUnits('fraction') inverter_efficiency.setDefaultValue(0.98) args << inverter_efficiency # TODO: = add in min and max azimuth arguments, think about how I want to handle flat roofs. return args end # define what happens when the measure is run def run(model, runner, user_arguments) super(model, runner, user_arguments) # use the built-in error checking if !runner.validateUserArguments(arguments(model), user_arguments) return false end # assign the user inputs to variables args = runner.getArgumentValues(arguments(model), user_arguments) args = Hash[args.collect{ |k, v| [k.to_s, v] }] if !args then return false end # check expected values of double arguments # todo - not sure why this isn't working. Elsewhere it is used on E+ and reporting measures. # todo - maybe related is this error on test 'Asked to create a flat json serialization of a vector of attributes with non-unique names' # fraction_check = OsLib_HelperMethods.checkDoubleAndIntegerArguments(runner, user_arguments,{"min"=>0.0,"max"=>1.0,"min_eq_bool"=>true,"max_eq_bool"=>true,"arg_array" =>["fraction_of_surface","cell_efficiency","inverter_efficiency"]}) # if !fraction_check then return false end # report initial condition of model runner.registerInitialCondition("The building started with #{model.getShadingSurfaces.size} shading surfaces.") # create copies of exterior roofs has shading surfaces 12 inches above teh roof. Maybe the height should become an argument. vertical_offset_ip = 1.0 # feet vertical_offset_si = OpenStudio.convert(vertical_offset_ip, 'ft', 'm').get # create the inverter inverter = OpenStudio::Model::ElectricLoadCenterInverterSimple.new(model) inverter.setInverterEfficiency(args['inverter_efficiency']) runner.registerInfo("Created inverter with efficiency of #{inverter.inverterEfficiency}") # create the distribution system elcd = OpenStudio::Model::ElectricLoadCenterDistribution.new(model) elcd.setInverter(inverter) # create shared shading transmittance schedule target_transmittance = 1.0 - args['fraction_of_surface'].to_f inputs = { 'name' => 'PV Shading Transmittance Schedule', 'winterTimeValuePairs' => { 24.0 => target_transmittance }, 'summerTimeValuePairs' => { 24.0 => target_transmittance }, 'defaultTimeValuePairs' => { 24.0 => target_transmittance } } pv_shading_transmittance_schedule = OpenstudioStandards::Schedules.create_simple_schedule(model, inputs) runner.registerInfo("Created transmittance schedule for PV shading surfaces with constant value of #{target_transmittance}") model.getSurfaces.each do |surface| next if !surface.space.is_initialized if (surface.surfaceType == 'RoofCeiling') && (surface.outsideBoundaryCondition == 'Outdoors') # store vertices vertices = surface.vertices origin = [surface.space.get.xOrigin, surface.space.get.yOrigin, surface.space.get.zOrigin] # make shading surface group and set origin shading_surface_group = OpenStudio::Model::ShadingSurfaceGroup.new(model) shading_surface_group.setXOrigin(origin[0]) shading_surface_group.setYOrigin(origin[1]) shading_surface_group.setZOrigin(origin[2] + vertical_offset_si) # make shading surface for new group shading_surface = OpenStudio::Model::ShadingSurface.new(vertices, model) shading_surface.setShadingSurfaceGroup(shading_surface_group) shading_surface.setName("PV - #{surface.name}") shading_surface.setTransmittanceSchedule(pv_shading_transmittance_schedule) # create the panel panel = OpenStudio::Model::GeneratorPhotovoltaic.simple(model) panel.setSurface(shading_surface) performance = panel.photovoltaicPerformance.to_PhotovoltaicPerformanceSimple.get performance.setFractionOfSurfaceAreaWithActiveSolarCells(args['fraction_of_surface']) performance.setFixedEfficiency(args['cell_efficiency']) # connect panel to electric load center distribution elcd.addGenerator(panel) runner.registerInfo("Created shading surface for PV over #{surface.name} with a cell efficiency of #{performance.fixedEfficiency} and surface coverage fraction of #{performance.fractionOfSurfaceAreaWithActiveSolarCells}") end end # report final condition of model runner.registerFinalCondition("The building finished with #{model.getShadingSurfaces.size} shading surfaces.") return true end end # register the measure to be used by the application AddRooftopPV.new.registerWithApplication