require 'ruby_brain' require 'ruby_brain/dataset/mnist/data' # NUM_TEST_DATA = 50000 dataset = RubyBrain::DataSet::Mnist::data NUM_TRAIN_DATA = 5000 training_input = dataset[:input][0..(NUM_TRAIN_DATA-1)] training_supervisor = dataset[:output][0..(NUM_TRAIN_DATA-1)] # test_input = dataset[:input][NUM_TRAIN_DATA..(NUM_TRAIN_DATA+NUM_TEST_DATA-1)] # test_supervisor = dataset[:output][NUM_TRAIN_DATA..(NUM_TRAIN_DATA+NUM_TEST_DATA-1)] test_input = dataset[:input][NUM_TRAIN_DATA..-1] test_supervisor = dataset[:output][NUM_TRAIN_DATA..-1] network = RubyBrain::Network.new([dataset[:input].first.size, 50, dataset[:output].first.size]) network.learning_rate = 0.7 network.init_network ### You can load weights from file in this timing if you want. # network.load_weights_from_yaml_file(File.dirname(__FILE__) + '/../best_weights_1469044985.yml') ### You can initializes weights by loading weights from file if you want. # network.load_weights_from_yaml_file('path/to/weights.yml.file') network.learn(training_input, training_supervisor, max_training_count=100, tolerance=0.0004, monitoring_channels=[:best_params_training]) ### You can save weights into a yml file if you want. # network.dump_weights_to_yaml('path/to/weights.yml.file') class Array def argmax max_i, max_val = 0, self.first self.each_with_index do |v, i| max_val, max_i = v, i if v > max_val end max_i end end results = [] test_input.each_with_index do |input, i| ### You can see test input, label and predicated lable in standard out if you uncomment in this block # input.each_with_index do |e, j| # print(e > 0.3 ? 'x' : ' ') # puts if (j % 28) == 0 # end # puts supervisor_label = test_supervisor[i].argmax predicated_label = network.get_forward_outputs(test_input[i]).argmax # puts "test_supervisor: #{supervisor_label}" # puts "predicate: #{predicated_label}" results << (supervisor_label == predicated_label) # puts "------------------------------------------------------------" end puts "accuracy: #{results.count(true).to_f/results.size}" ### you can do above procedure simply by using Trainer # training_option = { # learning_rate: 0.5, # max_training_count: 50, # tolerance: 0.0004, # # initial_weights_file: 'weights_3_30_10_1429166740.yml', # # initial_weights_file: 'best_weights_1429544001.yml', # monitoring_channels: [:best_params_training] # } # RubyBrain::Trainer.normal_learning([dataset[:input].first.size, 50, dataset[:output].first.size], # training_input, training_supervisor, # training_option)