# frozen_string_literal: true require 'lbfgsb' require 'rumale/utils' require 'rumale/validation' require 'rumale/base/classifier' require_relative 'base_estimator' module Rumale module LinearModel # LogisticRegression is a class that implements (multinomial) Logistic Regression. # # @note # Rumale::SVM provides Logistic Regression based on LIBLINEAR. # If you prefer execution speed, you should use Rumale::SVM::LogisticRegression. # https://github.com/yoshoku/rumale-svm # # @example # require 'rumale/linear_model/logistic_regression' # # estimator = Rumale::LinearModel::LogisticRegression.new(reg_param: 1.0) # estimator.fit(training_samples, traininig_labels) # results = estimator.predict(testing_samples) class LogisticRegression < Rumale::LinearModel::BaseEstimator include Rumale::Base::Classifier # Return the class labels. # @return [Numo::Int32] (shape: [n_classes]) attr_reader :classes # Create a new classifier with Logisitc Regression. # # @param reg_param [Float] The regularization parameter. # @param fit_bias [Boolean] The flag indicating whether to fit the bias term. # @param bias_scale [Float] The scale of the bias term. # If fit_bias is true, the feature vector v becoms [v; bias_scale]. # @param max_iter [Integer] The maximum number of epochs that indicates # how many times the whole data is given to the training process. # @param tol [Float] The tolerance of loss for terminating optimization. # @param n_jobs [Integer] The number of jobs for running the predict methods in parallel. # If nil is given, the methods do not execute in parallel. # If zero or less is given, it becomes equal to the number of processors. # This parameter is ignored if the Parallel gem is not loaded. # @param verbose [Boolean] The flag indicating whether to output loss during iteration. # 'iterate.dat' file is generated by lbfgsb.rb. def initialize(reg_param: 1.0, fit_bias: true, bias_scale: 1.0, max_iter: 1000, tol: 1e-4, n_jobs: nil, verbose: false) super() @params = { reg_param: reg_param, fit_bias: fit_bias, bias_scale: bias_scale, max_iter: max_iter, tol: tol, n_jobs: n_jobs, verbose: verbose } end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model. # @return [LogisticRegression] The learned classifier itself. def fit(x, y) x = Rumale::Validation.check_convert_sample_array(x) y = Rumale::Validation.check_convert_label_array(y) Rumale::Validation.check_sample_size(x, y) @classes = Numo::Int32[*y.to_a.uniq.sort] @weight_vec, @bias_term = partial_fit(x, y) self end # Calculate confidence scores for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample. def decision_function(x) x = Rumale::Validation.check_convert_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end # Predict class labels for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels. # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample. def predict(x) x = Rumale::Validation.check_convert_sample_array(x) n_samples, = x.shape decision_values = predict_proba(x) predicted = if enable_parallel? parallel_map(n_samples) { |n| @classes[decision_values[n, true].max_index] } else Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] } end Numo::Int32.asarray(predicted) end # Predict probability for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities. # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample. def predict_proba(x) x = Rumale::Validation.check_convert_sample_array(x) proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0) return (proba.transpose / proba.sum(axis: 1)).transpose.dup if multiclass_problem? n_samples, = x.shape probs = Numo::DFloat.zeros(n_samples, 2) probs[true, 1] = proba probs[true, 0] = 1.0 - proba probs end private def partial_fit(base_x, base_y) # rubocop:disable Metrics/AbcSize, Metrics/MethodLength if multiclass_problem? fnc = proc do |w, x, y, a| n_features = x.shape[1] n_classes = y.shape[1] z = x.dot(w.reshape(n_classes, n_features).transpose) # logsumexp and softmax z_max = z.max(-1).expand_dims(-1).dup z_max[~z_max.isfinite] = 0.0 lgsexp = Numo::NMath.log(Numo::NMath.exp(z - z_max).sum(axis: -1)).expand_dims(-1) + z_max t = z - lgsexp sftmax = Numo::NMath.exp(t) # loss and gradient loss = -(y * t).sum + 0.5 * a * w.dot(w) grad = (sftmax - y).transpose.dot(x).flatten.dup + a * w [loss, grad] end base_x = expand_feature(base_x) if fit_bias? onehot_y = ::Rumale::Utils.binarize_labels(base_y) n_classes = @classes.size n_features = base_x.shape[1] w_init = Numo::DFloat.zeros(n_classes * n_features) res = Lbfgsb.minimize( fnc: fnc, jcb: true, x_init: w_init, args: [base_x, onehot_y, @params[:reg_param]], maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON, verbose: @params[:verbose] ? 1 : -1 ) split_weight(res[:x].reshape(n_classes, n_features)) else fnc = proc do |w, x, y, a| z = 1 + Numo::NMath.exp(-y * x.dot(w)) loss = Numo::NMath.log(z).sum + 0.5 * a * w.dot(w) grad = (y / z - y).dot(x) + a * w [loss, grad] end base_x = expand_feature(base_x) if fit_bias? negative_label = @classes[0] bin_y = Numo::Int32.cast(base_y.ne(negative_label)) * 2 - 1 n_features = base_x.shape[1] w_init = Numo::DFloat.zeros(n_features) res = Lbfgsb.minimize( fnc: fnc, jcb: true, x_init: w_init, args: [base_x, bin_y, @params[:reg_param]], maxiter: @params[:max_iter], factr: @params[:tol] / Lbfgsb::DBL_EPSILON, verbose: @params[:verbose] ? 1 : -1 ) split_weight(res[:x]) end end def multiclass_problem? @classes.size > 2 end end end end