#pragma once #ifdef isfinite #undef isfinite #endif #include using namespace Rice; using torch::Device; using torch::Scalar; using torch::ScalarType; using torch::Tensor; using torch::QScheme; using torch::Generator; using torch::TensorOptions; using torch::Layout; using torch::MemoryFormat; using torch::IntArrayRef; using torch::ArrayRef; using torch::TensorList; using torch::Storage; using torch::nn::init::FanModeType; using torch::nn::init::NonlinearityType; #define HANDLE_TH_ERRORS \ try { #define END_HANDLE_TH_ERRORS \ } catch (const torch::Error& ex) { \ rb_raise(rb_eRuntimeError, "%s", ex.what_without_backtrace()); \ } catch (const Rice::Exception& ex) { \ rb_raise(ex.class_of(), "%s", ex.what()); \ } catch (const std::exception& ex) { \ rb_raise(rb_eRuntimeError, "%s", ex.what()); \ } #define RETURN_NIL \ return Qnil; class OptionalTensor { torch::Tensor value; public: OptionalTensor(Object o) { if (o.is_nil()) { value = {}; } else { value = Rice::detail::From_Ruby().convert(o.value()); } } OptionalTensor(torch::Tensor o) { value = o; } operator torch::Tensor() const { return value; } }; namespace Rice::detail { template<> struct Type { static bool verify() { return true; } }; template<> class From_Ruby { public: FanModeType convert(VALUE x) { auto s = String(x).str(); if (s == "fan_in") { return torch::kFanIn; } else if (s == "fan_out") { return torch::kFanOut; } else { throw std::runtime_error("Unsupported nonlinearity type: " + s); } } }; template<> struct Type { static bool verify() { return true; } }; template<> class From_Ruby { public: NonlinearityType convert(VALUE x) { auto s = String(x).str(); if (s == "linear") { return torch::kLinear; } else if (s == "conv1d") { return torch::kConv1D; } else if (s == "conv2d") { return torch::kConv2D; } else if (s == "conv3d") { return torch::kConv3D; } else if (s == "conv_transpose1d") { return torch::kConvTranspose1D; } else if (s == "conv_transpose2d") { return torch::kConvTranspose2D; } else if (s == "conv_transpose3d") { return torch::kConvTranspose3D; } else if (s == "sigmoid") { return torch::kSigmoid; } else if (s == "tanh") { return torch::kTanh; } else if (s == "relu") { return torch::kReLU; } else if (s == "leaky_relu") { return torch::kLeakyReLU; } else { throw std::runtime_error("Unsupported nonlinearity type: " + s); } } }; template<> struct Type { static bool verify() { return true; } }; template<> class From_Ruby { public: OptionalTensor convert(VALUE x) { return OptionalTensor(x); } }; template<> struct Type { static bool verify() { return true; } }; template<> class From_Ruby { public: Scalar convert(VALUE x) { if (FIXNUM_P(x)) { return torch::Scalar(From_Ruby().convert(x)); } else { return torch::Scalar(From_Ruby().convert(x)); } } }; template struct Type> { static bool verify() { return true; } }; template class From_Ruby> { public: torch::optional convert(VALUE x) { if (NIL_P(x)) { return torch::nullopt; } else { return torch::optional{From_Ruby().convert(x)}; } } }; }