//! risc-v 64-bit Instruction Set Architecture. use crate::dominator_tree::DominatorTree; use crate::ir::{Function, Type}; use crate::isa::riscv64::settings as riscv_settings; use crate::isa::{Builder as IsaBuilder, FunctionAlignment, OwnedTargetIsa, TargetIsa}; use crate::machinst::{ compile, CompiledCode, CompiledCodeStencil, MachInst, MachTextSectionBuilder, Reg, SigSet, TextSectionBuilder, VCode, }; use crate::result::CodegenResult; use crate::settings::{self as shared_settings, Flags}; use crate::{ir, CodegenError}; use alloc::{boxed::Box, vec::Vec}; use core::fmt; use cranelift_control::ControlPlane; use target_lexicon::{Architecture, Triple}; mod abi; pub(crate) mod inst; mod lower; mod settings; #[cfg(feature = "unwind")] use crate::isa::unwind::systemv; use self::inst::EmitInfo; /// An riscv64 backend. pub struct Riscv64Backend { triple: Triple, flags: shared_settings::Flags, isa_flags: riscv_settings::Flags, } impl Riscv64Backend { /// Create a new riscv64 backend with the given (shared) flags. pub fn new_with_flags( triple: Triple, flags: shared_settings::Flags, isa_flags: riscv_settings::Flags, ) -> Riscv64Backend { Riscv64Backend { triple, flags, isa_flags, } } /// This performs lowering to VCode, register-allocates the code, computes block layout and /// finalizes branches. The result is ready for binary emission. fn compile_vcode( &self, func: &Function, domtree: &DominatorTree, ctrl_plane: &mut ControlPlane, ) -> CodegenResult<(VCode, regalloc2::Output)> { let emit_info = EmitInfo::new(self.flags.clone(), self.isa_flags.clone()); let sigs = SigSet::new::(func, &self.flags)?; let abi = abi::Riscv64Callee::new(func, self, &self.isa_flags, &sigs)?; compile::compile::(func, domtree, self, abi, emit_info, sigs, ctrl_plane) } } impl TargetIsa for Riscv64Backend { fn compile_function( &self, func: &Function, domtree: &DominatorTree, want_disasm: bool, ctrl_plane: &mut ControlPlane, ) -> CodegenResult { let (vcode, regalloc_result) = self.compile_vcode(func, domtree, ctrl_plane)?; let want_disasm = want_disasm || log::log_enabled!(log::Level::Debug); let emit_result = vcode.emit(®alloc_result, want_disasm, &self.flags, ctrl_plane); let frame_size = emit_result.frame_size; let value_labels_ranges = emit_result.value_labels_ranges; let buffer = emit_result.buffer; let sized_stackslot_offsets = emit_result.sized_stackslot_offsets; let dynamic_stackslot_offsets = emit_result.dynamic_stackslot_offsets; if let Some(disasm) = emit_result.disasm.as_ref() { log::debug!("disassembly:\n{}", disasm); } Ok(CompiledCodeStencil { buffer, frame_size, vcode: emit_result.disasm, value_labels_ranges, sized_stackslot_offsets, dynamic_stackslot_offsets, bb_starts: emit_result.bb_offsets, bb_edges: emit_result.bb_edges, }) } fn name(&self) -> &'static str { "riscv64" } fn dynamic_vector_bytes(&self, _dynamic_ty: ir::Type) -> u32 { 16 } fn triple(&self) -> &Triple { &self.triple } fn flags(&self) -> &shared_settings::Flags { &self.flags } fn isa_flags(&self) -> Vec { self.isa_flags.iter().collect() } #[cfg(feature = "unwind")] fn emit_unwind_info( &self, result: &CompiledCode, kind: crate::isa::unwind::UnwindInfoKind, ) -> CodegenResult> { use crate::isa::unwind::UnwindInfo; use crate::isa::unwind::UnwindInfoKind; Ok(match kind { UnwindInfoKind::SystemV => { let mapper = self::inst::unwind::systemv::RegisterMapper; Some(UnwindInfo::SystemV( crate::isa::unwind::systemv::create_unwind_info_from_insts( &result.buffer.unwind_info[..], result.buffer.data().len(), &mapper, )?, )) } UnwindInfoKind::Windows => None, _ => None, }) } #[cfg(feature = "unwind")] fn create_systemv_cie(&self) -> Option { Some(inst::unwind::systemv::create_cie()) } fn text_section_builder(&self, num_funcs: usize) -> Box { Box::new(MachTextSectionBuilder::::new(num_funcs)) } #[cfg(feature = "unwind")] fn map_regalloc_reg_to_dwarf(&self, reg: Reg) -> Result { inst::unwind::systemv::map_reg(reg).map(|reg| reg.0) } fn function_alignment(&self) -> FunctionAlignment { inst::Inst::function_alignment() } fn page_size_align_log2(&self) -> u8 { debug_assert_eq!(1 << 12, 0x1000); 12 } #[cfg(feature = "disas")] fn to_capstone(&self) -> Result { use capstone::prelude::*; let mut cs_builder = Capstone::new().riscv().mode(arch::riscv::ArchMode::RiscV64); // Enable C instruction decoding if we have compressed instructions enabled. // // We can't enable this unconditionally because it will cause Capstone to // emit weird instructions and generally mess up when it encounters unknown // instructions, such as any Zba,Zbb,Zbc or Vector instructions. // // This causes the default disassembly to be quite unreadable, so enable // it only when we are actually going to be using them. let uses_compressed = self .isa_flags() .iter() .filter(|f| ["has_zca", "has_zcb", "has_zcd"].contains(&f.name)) .any(|f| f.as_bool().unwrap_or(false)); if uses_compressed { cs_builder = cs_builder.extra_mode([arch::riscv::ArchExtraMode::RiscVC].into_iter()); } let mut cs = cs_builder.build()?; // Similar to AArch64, RISC-V uses inline constants rather than a separate // constant pool. We want to skip disassembly over inline constants instead // of stopping on invalid bytes. cs.set_skipdata(true)?; Ok(cs) } fn has_native_fma(&self) -> bool { true } fn has_x86_blendv_lowering(&self, _: Type) -> bool { false } fn has_x86_pshufb_lowering(&self) -> bool { false } fn has_x86_pmulhrsw_lowering(&self) -> bool { false } fn has_x86_pmaddubsw_lowering(&self) -> bool { false } } impl fmt::Display for Riscv64Backend { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("MachBackend") .field("name", &self.name()) .field("triple", &self.triple()) .field("flags", &format!("{}", self.flags())) .finish() } } /// Create a new `isa::Builder`. pub fn isa_builder(triple: Triple) -> IsaBuilder { match triple.architecture { Architecture::Riscv64(..) => {} _ => unreachable!(), } IsaBuilder { triple, setup: riscv_settings::builder(), constructor: isa_constructor, } } fn isa_constructor( triple: Triple, shared_flags: Flags, builder: &shared_settings::Builder, ) -> CodegenResult { let isa_flags = riscv_settings::Flags::new(&shared_flags, builder); // The RISC-V backend does not work without at least the G extension enabled. // The G extension is simply a combination of the following extensions: // - I: Base Integer Instruction Set // - M: Integer Multiplication and Division // - A: Atomic Instructions // - F: Single-Precision Floating-Point // - D: Double-Precision Floating-Point // - Zicsr: Control and Status Register Instructions // - Zifencei: Instruction-Fetch Fence // // Ensure that those combination of features is enabled. if !isa_flags.has_g() { return Err(CodegenError::Unsupported( "The RISC-V Backend currently requires all the features in the G Extension enabled" .into(), )); } let backend = Riscv64Backend::new_with_flags(triple, shared_flags, isa_flags); Ok(backend.wrapped()) }