require "dnn" require "dnn/datasets/iris" # If you use numo/linalg then please uncomment out. # require "numo/linalg/autoloader" include DNN::Models include DNN::Layers include DNN::Optimizers include DNN::Losses x, y = DNN::Iris.load(true) x_train, y_train = x[0...100, true], y[0...100] x_test, y_test = x[100...150, true], y[100...150] y_train = DNN::Utils.to_categorical(y_train, 3, Numo::SFloat) y_test = DNN::Utils.to_categorical(y_test, 3, Numo::SFloat) model = Sequential.new model << InputLayer.new(4) model << Dense.new(64) model << ReLU.new model << Dense.new(3) model.setup(Adam.new, SoftmaxCrossEntropy.new) model.train(x_train, y_train, 500, batch_size: 32, test: [x_test, y_test]) accuracy, loss = model.evaluate(x_test, y_test) puts "accuracy: #{accuracy}" puts "loss: #{loss}"