# hbase-jruby *hbase-jruby* is a simple JRuby binding for HBase. *hbase-jruby* provides the followings: - Easy, Ruby-esque interface for the fundamental HBase operations - ActiveRecord-like method chaining for data retrieval - Automatic Hadoop/HBase dependency resolution ## A quick example ```ruby require 'hbase-jruby' HBase.resolve_dependency! 'cdh4.1.3' hbase = HBase.new table = hbase[:test_table] # PUT table.put :rowkey1 => { 'cf1:a' => 100, 'cf2:b' => "Hello" } # GET row = table.get(:rowkey1) number = row.fixnum('cf1:a') string = row.string('cf1:b') # SCAN table.range('rowkey1'..'rowkey9'). filter('cf1:a' => 100..200, # cf1:a between 100 and 200 'cf1:b' => 'Hello', # cf1:b = 'Hello' 'cf2:c' => /world/i, # cf2:c matches /world/i 'cf2:d' => ['foo', /^BAR/i]). # cf2:d = 'foo' OR matches /^BAR/i project('cf1:a', 'cf2'). each do |row| puts row.fixnum('cf1:a') end # DELETE table.delete(:rowkey9) ``` ## Installation ### From Rubygems gem install hbase-jruby ### From source git clone -b devel https://github.com/junegunn/hbase-jruby.git cd hbase-jruby rake build gem install pkg/hbase-jruby-0.2.2-java.gem ## Setting up ### Resolving Hadoop/HBase dependency To be able to access HBase from JRuby, Hadoop/HBase dependency must be satisfied. This can be done by either setting up CLASSPATH variable beforehand or by `require`ing relevant JAR files after launching JRuby. ### `HBase.resolve_dependency!` Well, there's an easier way. Call `HBase.resolve_dependency!` helper method passing one of the arguments listed below. | Argument | Dependency | Required executable | |------------|--------------------------|---------------------| | cdh4.1[.*] | Cloudera CDH4.1 | mvn | | cdh3[u*] | Cloudera CDH3 | mvn | | 0.94[.*] | Apache HBase 0.94 | mvn | | 0.92[.*] | Apache HBase 0.92 | mvn | | *POM PATH* | Custom Maven POM file | mvn | | `:local` | Local HBase installation | hbase | #### Examples ```ruby # Load JAR files from CDH4.1.x using Maven HBase.resolve_dependency! 'cdh4.1.3' HBase.resolve_dependency! 'cdh4.1.1' # Load JAR files of HBase 0.94.x using Maven HBase.resolve_dependency! '0.94.1' HBase.resolve_dependency! '0.94.2', :verbose => true # Dependency resolution with custom POM file HBase.resolve_dependency! '/path/to/my/pom.xml' HBase.resolve_dependency! '/path/to/my/pom.xml', :profile => 'trunk' # Load JAR files from local HBase installation HBase.resolve_dependency! :local ``` (If you're behind an http proxy, set up your ~/.m2/settings.xml file as described in [this page](http://maven.apache.org/guides/mini/guide-proxies.html)) ### Log4j logs from HBase You may want to suppress (or customize) log messages from HBase. ```ruby # With an external log4j.properties file HBase.log4j = '/your/log4j.properties' # With a Hash HBase.log4j = { 'log4j.threshold' => 'ERROR' } ``` ### Connecting to HBase ```ruby # HBase on localhost hbase = HBase.new # HBase on remote host hbase = HBase.new 'hbase.zookeeper.quorum' => 'remote-server.mydomain.net' # Extra configuration hbase = HBase.new 'hbase.zookeeper.quorum' => 'remote-server.mydomain.net', 'hbase.client.retries.number' => 3, 'hbase.client.scanner.caching' => 1000, 'hbase.rpc.timeout' => 120000 # Close HBase connection hbase.close ``` ## Accessing data with HBase::Table instance `HBase#[]` method (or `HBase#table`) returns an `HBase::Table` instance which represents the table of the given name. ```ruby table = hbase.table(:test_table) # Or simply, table = hbase[:test_table] ``` ## Basic table administration ### Creating a table ```ruby table = hbase[:my_table] # Drop table if exists table.drop! if table.exists? # Create table with two column families table.create! :cf1 => {}, :cf2 => { :compression => :snappy, :bloomfilter => :row } ``` ### Table inspection ```ruby # Table properties table.properties # {:max_filesize => 2147483648, # :readonly => false, # :memstore_flushsize => 134217728, # :deferred_log_flush => false} # Properties of the column families table.families # {"cf"=> # {:blockcache => true, # :blocksize => 65536, # :bloomfilter => "NONE", # :cache_blooms_on_write => false, # :cache_data_on_write => false, # :cache_index_on_write => false, # :compression => "NONE", # :compression_compact => "NONE", # :data_block_encoding => "NONE", # :evict_blocks_on_close => false, # :in_memory => false, # :keep_deleted_cells => false, # :min_versions => 0, # :replication_scope => 0, # :ttl => 2147483647, # :versions => 3}} ``` There are also `raw_` variants of `properties` and `families`. They return properties in their internal String format (mainly used in HBase shell). (See [HTableDescriptor.values](http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HTableDescriptor.html#values) and [HColumnDescriptor.values](http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HColumnDescriptor.html#values)) ```ruby table.raw_properties # {"IS_ROOT" => "false", # "IS_META" => "false", # "MAX_FILESIZE" => "2147483648"} table.raw_families # {"cf" => # {"DATA_BLOCK_ENCODING" => "NONE", # "BLOOMFILTER" => "NONE", # "REPLICATION_SCOPE" => "0", # "VERSIONS" => "3", # "COMPRESSION" => "NONE", # "MIN_VERSIONS" => "0", # "TTL" => "2147483647", # "KEEP_DELETED_CELLS" => "false", # "BLOCKSIZE" => "65536", # "IN_MEMORY" => "false", # "ENCODE_ON_DISK" => "true", # "BLOCKCACHE" => "true"}} ``` These String key-value pairs are not really a part of the public API of HBase, and thus might change over time. However, they are most useful when you need to create a table with the same properties as the existing one. ```ruby hbase[:dupe_table].create!(table.raw_families, table.raw_properties) ``` With `regions` method, you can even presplit the new table just like the old one. ```ruby hbase[:dupe_table].create!( table.raw_families, table.raw_properties.merge( :splits => table.regions.map { |r| r[:start_key] }.compact)) ``` ## Basic operations ### PUT ```ruby # Putting a single row table.put 'rowkey1', 'cf1:col1' => "Hello", 'cf2:col2' => "World" # Putting multiple rows table.put 'rowkey1' => { 'cf1:col1' => "Hello", 'cf2:col2' => "World" }, 'rowkey2' => { 'cf1:col1' => "Howdy", 'cf2:col2' => "World" }, 'rowkey3' => { 'cf1:col1' => "So long", 'cf2:col2' => "World" } # Putting values with timestamps table.put 'rowkey1' => { 'cf1:col1' => { 1353143856665 => "Hello", 1352978648642 => "Goodbye" }, 'cf2:col2' => "World" } ``` ### GET HBase stores everything as a byte array, so when you fetch data from HBase, you need to explicitly specify the type of each value stored. ```ruby row = table.get('rowkey1') # Rowkey rowk = row.rowkey # Column value as a raw Java byte array col0 = row.raw 'cf1:col0' # Decode column values col1 = row.string 'cf1:col1' col2 = row.fixnum 'cf1:col2' col3 = row.bigdecimal 'cf1:col3' col4 = row.float 'cf1:col4' col5 = row.boolean 'cf1:col5' col6 = row.symbol 'cf1:col6' # Decode multiple columns at once row.string ['cf1:str1', 'cf1:str2'] # [ "Hello", "World" ] ``` #### Batch GET ```ruby # Pass an array of row keys as the parameter rows = table.get(['rowkey1', 'rowkey2', 'rowkey3']) ``` #### Decode all versions with plural-form (-s) methods ```ruby # Decode all versions as Hash indexed by their timestamps row.strings 'cf1:str' # {1353143856665=>"Hello", 1353143856662=>"Goodbye"} # Decode all versions of multiple columns row.strings ['cf1:str1', 'cf1:str2'] # [ # {1353143856665=>"Hello", 1353143856662=>"Goodbye"}, # {1353143856665=>"World", 1353143856662=>"Cruel world"} # ] # Plural-form methods are provided for any other data types as well cols0 = row.raws 'cf1:col0' cols1 = row.strings 'cf1:col1' cols2 = row.fixnums 'cf1:col2' cols3 = row.bigdecimals 'cf1:col3' cols4 = row.floats 'cf1:col4' cols5 = row.booleans 'cf1:col5' cols6 = row.symbols 'cf1:col6' ``` #### Intra-row scan Intra-row scan can be done with `each` method which yields `HBase::Cell` instances. ```ruby # Intra-row scan (all versions) row.each do |cell| family = cell.family qualifier = cell.qualifier(:string) # Column qualifier as String timestamp = cell.timestamp # Cell value as Java byte array bytes = cell.bytes # Typed access # value_as_string = cell.string # value_as_fixnum = cell.fixnum # ... end ``` #### `to_hash` ```ruby # Returns the Hash representation of the record with the specified schema schema = { 'cf1:col1' => :string, 'cf1:col2' => :fixnum, 'cf1:col3' => :bigdecimal, 'cf1:col4' => :float, 'cf1:col5' => :boolean, 'cf1:col6' => :symbol } table.get('rowkey1').to_hash(schema) # Returns all versions for each column indexed by their timestamps table.get('rowkey1').to_hash_with_versions(schema) ``` ### DELETE ```ruby # Deletes a row table.delete('rowkey1') # Deletes all columns in the specified column family table.delete('rowkey1', 'cf1') # Deletes a column table.delete('rowkey1', 'cf1:col1') # Deletes a column with empty qualifier. # (!= deleing the entire columns in the family. See the trailing colon.) table.delete('rowkey1', 'cf1:') # Deletes a version of a column table.delete('rowkey1', 'cf1:col1', 1352978648642) # Deletes multiple versions of a column table.delete('rowkey1', 'cf1:col1', 1352978648642, 1352978649642) # Batch delete table.delete(['rowkey1'], ['rowkey2'], ['rowkey3', 'cf1:col1', 1352978648642, 135297864964]) ``` However, the last syntax seems a bit unwieldy when you just wish to delete a few rows. In that case, use simpler `delete_row` method. ```ruby table.delete_row 'rowkey1' table.delete_row 'rowkey1', 'rowkey2', 'rowkey3' ``` ### Atomic increment of column values ```ruby # Atomically increase cf1:counter by one table.increment('rowkey1', 'cf1:counter', 1) # Atomically increase two columns by one and two respectively table.increment('rowkey1', 'cf1:counter' => 1, 'cf1:counter2' => 2) ``` ### SCAN `HBase::Table` itself is an enumerable object. ```ruby # Full scan table.each do |row| age = row.fixnum('cf:age') name = row.string('cf:name') # ... end ``` ## Scoped access You can control how you retrieve data by chaining the following methods of `HBase::Table` (or `HBase::Scoped`). | Method | Description | |------------------|-----------------------------------------------------------------| | `range` | Specifies the rowkey range of scan | | `project` | To retrieve only a subset of columns | | `filter` | Filtering conditions of scan | | `while` | Allows early termination of scan (server-side) | | `at` | Only retrieve data with the specified timestamp | | `time_range` | Only retrieve data within the specified time range | | `limit` | Limits the number of rows | | `versions` | Limits the number of versions of each column | | `caching` | Sets the number of rows for caching during scan | | `batch` | Limits the maximum number of values returned for each iteration | | `with_java_scan` | *(ADVANCED)* Access Java Scan object in the given block | | `with_java_get` | *(ADVANCED)* Access Java Get object in the given block | Each invocation to these methods returns an `HBase::Scoped` instance with which you can retrieve data with the following methods. | Method | Description | |-------------|-------------------------------------------------------------------------| | `get` | Fetches rows by the given rowkeys | | `each` | Scans the scope of the table (`HBase::Scoped` instance is `Enumerable`) | | `count` | Efficiently counts the number of rows in the scope | | `aggregate` | Performs aggregation using Coprocessor (To be described shortly) | ### Example of scoped access ```ruby import org.apache.hadoop.hbase.filter.RandomRowFilter table.range('A'..'Z'). # Row key range, project('cf1:a'). # Select cf1:a column project('cf2'). # Select cf2 family as well filter('cf1:a' => 'Hello'). # Filter by cf1:a value filter('cf2:d' => 100..200). # Range filter on cf2:d filter('cf2:e' => [10, 20..30]). # Set-inclusion condition on cf2:e filter(RandomRowFilter.new(0.5)). # Any Java HBase filter while('cf2:f' => { ne: 'OPEN' }). # Early termination of scan time_range(Time.now - 600, Time.now). # Scan data of the last 10 minutes limit(10). # Limits the size of the result set versions(2). # Only fetches 2 versions for each value batch(100). # Batch size for scan set to 100 caching(1000). # Caching 1000 rows with_java_scan { |scan| # Directly access Java Scan object scan.setCacheBlocks false }. to_a # To Array ``` ### *range* `HBase::Scoped#range` method is used to filter rows based on their row keys. ```ruby # 100 ~ 900 (inclusive end) table.range(100..900) # 100 ~ 900 (exclusive end) table.range(100...900) # 100 ~ 900 (exclusive end) table.range(100, 900) # 100 ~ table.range(100) # ~ 900 (exclusive end) table.range(nil, 900) ``` Optionally, prefix filter can be applied as follows. ```ruby # Prefix filter # Row keys with "APPLE" prefix # Start key is automatically set to "APPLE", # stop key "APPLF" to avoid unnecessary disk access table.range(:prefix => 'APPLE') # Row keys with "ACE", "BLUE" or "APPLE" prefix # Start key is automatically set to "ACE", # stop key "BLUF" table.range(:prefix => ['ACE', 'BLUE', 'APPLE']) # Prefix filter with start key and stop key. table.range('ACE', 'BLUEMARINE', :prefix => ['ACE', 'BLUE', 'APPLE']) ``` Subsequent calls to `#range` override the range previously defined. ```ruby # Previous ranges are discarded scope.range(1, 100). range(50..100). range(:prefix => 'A'). range(1, 1000) # Same as `scope.range(1, 1000)` ``` ### *filter* You can configure server-side filtering of rows and columns with `HBase::Scoped#filter` calls. Multiple calls have conjunctive effects. ```ruby # Range scanning the table with filters table.range(nil, 1000). filter( # Numbers and characters: Checks if the value is equal to the given value 'cf1:a' => 'Hello', 'cf1:b' => 1024, # Range of numbers or characters: Checks if the value falls within the range 'cf1:c' => 100..200, 'cf1:d' => 'A'..'C', # Regular expression: Checks if the value matches the regular expression 'cf1:e' => /world$/i, # Hash: Tests the value with 6 types of operators (:gt, :lt, :gte, :lte, :eq, :ne) 'cf1:f' => { gt: 1000, lte: 2000 }, 'cf1:g' => { ne: 1000 }, # Array of the aforementioned types: OR condition (disjunctive) 'cf1:h' => %w[A B C], 'cf1:i' => ['A'...'B', 'C', /^D/, { lt: 'F' }]). # Multiple calls for conjunctive filtering filter('cf1:j' => ['Alice'..'Bob', 'Cat']). # Any number of Java filters can be applied filter(org.apache.hadoop.hbase.filter.RandomRowFilter.new(0.5)). each do |record| # ... end ``` ### *while* `HBase::Scoped#while` method takes the same parameters as `filter` method, the difference is that each filtering condition passed to `while` method is wrapped by `WhileMatchFilter`, which aborts scan immediately when the condition is not met at a certain row. See the following example. ```ruby (0...30).each do |idx| table.put idx, 'cf1:a' => idx % 10 end table.filter('cf1:a' => { lte: 1 }).to_a # 0, 1, 10, 11, 20, 21 table.while('cf1:a' => { lte: 1 }).to_a # 0, 1 # Scan terminates immediately when condition not met. ``` ### *project* `HBase::Scoped#project` allows you to fetch only a subset of columns from each row. Multiple calls have additive effects. ```ruby # Fetches cf1:a and all columns in column family cf2 and cf3 scoped.project('cf1:a', 'cf2'). project('cf3') ``` HBase filters can not only filter rows but also columns. Since column filtering can be thought of as a kind of projection, it makes sense to internally apply column filters in `HBase::Scoped#project`, instead of in `HBase::Scoped#filter`, although it's still perfectly valid to pass column filter to filter method. ```ruby # Column prefix filter: # Fetch columns whose qualifiers start with the specified prefixes scoped.project(:prefix => 'alice'). project(:prefix => %w[alice bob]) # Column range filter: # Fetch columns whose qualifiers within the ranges scoped.project(:range => 'a'...'c'). project(:range => ['i'...'k', 'x'...'z']) # Column pagination filter: # Fetch columns within the specified intra-scan offset and limit scoped.project(:offset => 1000, :limit => 10) ``` When using column filters on *fat* rows with many columns, it's advised that you limit the batch size with `HBase::Scoped#batch` call to avoid fetching all columns at once. However setting batch size allows multiple rows with the same row key are returned during scan. ```ruby # Let's say that we have rows with more than 10 columns whose qualifiers start with `str` puts scoped.range(1..100). project(:prefix => 'str'). batch(10). map { |row| [row.rowkey(:fixnum), row.count].map(&:to_s).join ': ' } # 1: 10 # 1: 10 # 1: 5 # 2: 10 # 2: 2 # 3: 10 # ... ``` ### Scoped SCAN / GET ```ruby scoped = table.versions(1). # Limits the number of versions filter('cf1:a' => 'Hello', # With filters 'cf1:b' => 100...200, 'cf1:c' => 'Alice'..'Bob'). range('rowkey0'..'rowkey2') # Range of rowkeys. project('cf1', 'cf2:x') # Projection # Scoped GET # Nonexistent or filtered rows are returned as nils scoped.get(['rowkey1', 'rowkey2', 'rowkey4']) # Scoped SCAN scoped.each do |row| row.each do |cell| # Intra-row scan end end # Scoped COUNT # When counting the number of rows, use `HTable::Scoped#count` # instead of just iterating through the scope, as it internally # minimizes amount of data fetched with KeyOnlyFilter scoped.count # This should be even faster as it dramatically reduces the number of RPC calls scoped.caching(5000).count ``` ## Basic aggregation using coprocessor You can perform some basic aggregation using the built-in coprocessor called `org.apache.hadoop.hbase.coprocessor.AggregateImplementation`. To enable this feature, call `enable_aggregation!` method, which adds the coprocessor to the table. ```ruby table.enable_aggregation! # Just a shorthand notation for # table.add_coprocessor! 'org.apache.hadoop.hbase.coprocessor.AggregateImplementation' ``` Then you can get the sum, average, minimum, maximum, row count, and standard deviation of the projected columns. ```ruby # cf1:a must hold 8-byte integer values table.project('cf1:a').aggregate(:sum) table.project('cf1:a').aggregate(:avg) table.project('cf1:a').aggregate(:min) table.project('cf1:a').aggregate(:max) table.project('cf1:a').aggregate(:std) table.project('cf1:a').aggregate(:row_count) # Aggregation of multiple columns table.project('cf1:a', 'cf1:b').aggregate(:sum) ``` By default, aggregate method assumes that the projected values are 8-byte integers. For other data types, you can pass your own ColumnInterpreter. ```ruby table.project('cf1:b').aggregate(:sum, MyColumnInterpreter.new) ``` ## Advanced topics ### Lexicographic scan order HBase stores rows in the lexicographic order of the rowkeys in their byte array representations. Thus the type of row key affects the scan order. ```ruby (1..15).times do |i| table.put i, data table.put i.to_s, data end table.range(1..3).map { |r| r.rowkey :fixnum } # [1, 2, 3] table.range('1'..'3').map { |r| r.rowkey :string } # %w[1 10 11 12 13 14 15 2 3] ``` ### Non-string column qualifier If a column qualifier is not a String, *an HBase::ColumnKey instance* should be used instead of a conventional `FAMILY:QUALIFIER` String. ```ruby table.put 'rowkey', 'cf1:col1' => 'Hello world', HBase::ColumnKey(:cf1, 100) => "Byte representation of an 8-byte integer", HBase::ColumnKey(:cf1, bytes) => "Qualifier is an arbitrary byte array" table.get('rowkey').string('cf1:col1') table.get('rowkey').string(HBase::ColumnKey(:cf1, 100)) # ... ``` ### Shorter integers A Ruby Fixnum is an 8-byte integer, which is equivalent `long` type in Java. When you want to use shorter integer types such as int, short, or byte, you can then use the special Hash representation of integers. ```ruby # 4-byte int value as the rowkey table.put({ int: 12345 }, 'cf1:a' => { byte: 100 }, # 1-byte integer 'cf1:b' => { short: 200 }, # 2-byte integer 'cf1:c' => { int: 300 }, # 4-byte integer 'cf1:4' => 400) # Ordinary 8-byte integer result = table.get(int: 12345) result.byte('cf1:a') # 100 result.short('cf1:b') # 200 result.int('cf1:c') # 300 # ... ``` ### Working with byte arrays In HBase, virtually everything is stored as a byte array. Although *hbase-jruby* tries hard to hide the fact, at some point you may need to get your hands dirty with native Java byte arrays. For example, it's [a common practice] [1] to use a composite row key, which is a concatenation of several components of different types. [1]: http://blog.sematext.com/2012/08/09/consider-using-fuzzyrowfilter-when-in-need-for-secondary-indexes-in-hbase/ `HBase::ByteArray` is a boxed class for native Java byte arrays, which makes byte array manipulation much easier. A ByteArray can be created as a concatenation of any number of objects. ```ruby ba = HBase::ByteArray(100, 3.14, {int: 300}, "Hello World") ``` Then you can slice it and decode each part, ```ruby # Slicing first = ba[0, 8] second = ba[8...16] first.decode(:fixnum) # 100 second.decode(:float) # 3.14 ``` append, prepend more elements to it, ```ruby ba.unshift 200, true ba << { short: 300 } ``` concatenate another ByteArray, ```ruby ba += HBase::ByteArray(1024) ``` or shift decoded objects from it. ```ruby ba.shift(:fixnum) ba.shift(:boolean) ba.shift(:fixnum) ba.shift(:float) ba.shift(:int) ba.shift(:string, 11) # Byte length must be given as Strings are not fixed in size ``` `ByteArray#java` method returns the underlying native Java byte array. ```ruby ba.java # Returns the native Java byte array (byte[]) ``` ### Table administration `HBase#Table` provides a number of *bang_methods!* for table administration tasks. They run synchronously, except when mentioned otherwise (e.g. `HTable#split!`). Some of them take an optional block to allow progress monitoring and come with non-bang, asynchronous counterparts. #### Creation and alteration ```ruby # Create a table with configurable table-level properties table.create!( # 1st Hash: Column family specification { :cf1 => { :compression => :snappy }, :cf2 => { :bloomfilter => :row } }, # 2nd Hash: Table properties :max_filesize => 256 * 1024 ** 2, :deferred_log_flush => false, :splits => [1000, 2000, 3000]) # Alter table properties (synchronous with optional block) table.alter!( :max_filesize => 512 * 1024 ** 2, :memstore_flushsize => 64 * 1024 ** 2, :readonly => false, :deferred_log_flush => true ) { |progress, total| # Progress report with an optional block puts [progress, total].join('/') } # Alter table properties (asynchronous) table.alter( :max_filesize => 512 * 1024 ** 2, :memstore_flushsize => 64 * 1024 ** 2, :readonly => false, :deferred_log_flush => true ) ``` ##### List of column family properties http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HColumnDescriptor.html Some of the properties are only available on recent versions of HBase. | Property | Type | Description | |--------------------------|---------------|--------------------------------------------------------------------------------------------------------------------| | `:blockcache` | Boolean | If MapFile blocks should be cached | | `:blocksize` | Fixnum | Blocksize to use when writing out storefiles/hfiles on this column family | | `:bloomfilter` | Symbol/String | Bloom filter type: `:none`, `:row`, `:rowcol`, or uppercase Strings | | `:cache_blooms_on_write` | Boolean | If we should cache bloomfilter blocks on write | | `:cache_data_on_write` | Boolean | If we should cache data blocks on write | | `:cache_index_on_write` | Boolean | If we should cache index blocks on write | | `:compression` | Symbol/String | Compression type: `:none`, `:gz`, `:lzo`, `:lz4`, `:snappy`, or uppercase Strings | | `:compression_compact` | Symbol/String | Compression type: `:none`, `:gz`, `:lzo`, `:lz4`, `:snappy`, or uppercase Strings | | `:data_block_encoding` | Symbol/String | Data block encoding algorithm used in block cache: `:none`, `:diff`, `:fast_diff`, `:prefix`, or uppercase Strings | | `:encode_on_disk` | Boolean | If we want to encode data block in cache and on disk | | `:evict_blocks_on_close` | Boolean | If we should evict cached blocks from the blockcache on close | | `:in_memory` | Boolean | If we are to keep all values in the HRegionServer cache | | `:keep_deleted_cells` | Boolean | If deleted rows should not be collected immediately | | `:min_versions` | Fixnum | The minimum number of versions to keep (used when timeToLive is set) | | `:replication_scope` | Fixnum | Replication scope | | `:ttl` | Fixnum | Time-to-live of cell contents, in seconds | | `:versions` | Fixnum | The maximum number of versions. (By default, all available versions are retrieved.) | ##### List of table properties http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HTableDescriptor.html | Property | Type | Description | |-----------------------|---------|---------------------------------------------------------------------------------------------------------| | `:max_filesize` | Fixnum | The maximum size upto which a region can grow to after which a region split is triggered | | `:readonly` | Boolean | If the table is read-only | | `:memstore_flushsize` | Fixnum | The maximum size of the memstore after which the contents of the memstore are flushed to the filesystem | | `:deferred_log_flush` | Boolean | Defer the log edits syncing to the file system | | `:splits` | Array | Region split points | #### Managing column families ```ruby # Add column family table.add_family! :cf3, :compression => :snappy, :bloomfilter => :row # Alter column family table.alter_family! :cf2, :bloomfilter => :rowcol # Remove column family table.delete_family! :cf1 ``` #### Coprocessors ```ruby # Add Coprocessor unless table.has_coprocessor?(cp_class_name1) table.add_coprocessor! cp_class_name1 end table.add_coprocessor! cp_class_name2, :path => path, :priority => priority, :params => params # Remove coprocessor table.remove_coprocessor! cp_class_name1 ``` #### Region splits (asynchronous) ```ruby table.split!(1000) table.split!(2000, 3000) ``` #### Advanced table administration You can perform other types of administrative tasks with native Java [HBaseAdmin object](http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HBaseAdmin.html), which can be obtained by `HBase#admin` method. Optionally, a block can be given so that the HBaseAdmin object is automatically closed at the end of the given block. ```ruby admin = hbase.admin # ... admin.close # With the block hbase.admin do |admin| # ... end ``` ## Test ```bash #!/bin/bash # Test HBase 0.94 on localhost export HBASE_JRUBY_TEST_ZK='127.0.0.1' export HBASE_JRUBY_TEST_DIST='0.94' # Test both for 1.8 and 1.9 for v in --1.8 --1.9; do export JRUBY_OPTS=$v rake test done ``` ## Contributing 1. Fork it 2. Create your feature branch (`git checkout -b my-new-feature`) 3. Commit your changes (`git commit -am 'Add some feature'`) 4. Push to the branch (`git push origin my-new-feature`) 5. Create new Pull Request