# frozen_string_literal: true # WARNING ABOUT GENERATED CODE # # This file is generated. See the contributing guide for more information: # https://github.com/aws/aws-sdk-ruby/blob/version-3/CONTRIBUTING.md # # WARNING ABOUT GENERATED CODE module Aws::SageMakerRuntime module Types # An internal failure occurred. # # @!attribute [rw] message # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/runtime.sagemaker-2017-05-13/InternalFailure AWS API Documentation # class InternalFailure < Struct.new( :message) SENSITIVE = [] include Aws::Structure end # @note When making an API call, you may pass InvokeEndpointAsyncInput # data as a hash: # # { # endpoint_name: "EndpointName", # required # content_type: "Header", # accept: "Header", # custom_attributes: "CustomAttributesHeader", # inference_id: "InferenceId", # input_location: "InputLocationHeader", # required # request_ttl_seconds: 1, # } # # @!attribute [rw] endpoint_name # The name of the endpoint that you specified when you created the # endpoint using the [ `CreateEndpoint` ][1] API. # # # # [1]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html # @return [String] # # @!attribute [rw] content_type # The MIME type of the input data in the request body. # @return [String] # # @!attribute [rw] accept # The desired MIME type of the inference in the response. # @return [String] # # @!attribute [rw] custom_attributes # Provides additional information about a request for an inference # submitted to a model hosted at an Amazon SageMaker endpoint. The # information is an opaque value that is forwarded verbatim. You could # use this value, for example, to provide an ID that you can use to # track a request or to provide other metadata that a service endpoint # was programmed to process. The value must consist of no more than # 1024 visible US-ASCII characters as specified in [Section 3.3.6. # Field Value Components][1] of the Hypertext Transfer Protocol # (HTTP/1.1). # # The code in your model is responsible for setting or updating any # custom attributes in the response. If your code does not set this # value in the response, an empty value is returned. For example, if a # custom attribute represents the trace ID, your model can prepend the # custom attribute with `Trace ID`\: in your post-processing function. # # This feature is currently supported in the AWS SDKs but not in the # Amazon SageMaker Python SDK. # # # # [1]: https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6 # @return [String] # # @!attribute [rw] inference_id # The identifier for the inference request. Amazon SageMaker will # generate an identifier for you if none is specified. # @return [String] # # @!attribute [rw] input_location # The Amazon S3 URI where the inference request payload is stored. # @return [String] # # @!attribute [rw] request_ttl_seconds # Maximum age in seconds a request can be in the queue before it is # marked as expired. # @return [Integer] # # @see http://docs.aws.amazon.com/goto/WebAPI/runtime.sagemaker-2017-05-13/InvokeEndpointAsyncInput AWS API Documentation # class InvokeEndpointAsyncInput < Struct.new( :endpoint_name, :content_type, :accept, :custom_attributes, :inference_id, :input_location, :request_ttl_seconds) SENSITIVE = [:custom_attributes] include Aws::Structure end # @!attribute [rw] inference_id # Identifier for an inference request. This will be the same as the # `InferenceId` specified in the input. Amazon SageMaker will generate # an identifier for you if you do not specify one. # @return [String] # # @!attribute [rw] output_location # The Amazon S3 URI where the inference response payload is stored. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/runtime.sagemaker-2017-05-13/InvokeEndpointAsyncOutput AWS API Documentation # class InvokeEndpointAsyncOutput < Struct.new( :inference_id, :output_location) SENSITIVE = [] include Aws::Structure end # @note When making an API call, you may pass InvokeEndpointInput # data as a hash: # # { # endpoint_name: "EndpointName", # required # body: "data", # required # content_type: "Header", # accept: "Header", # custom_attributes: "CustomAttributesHeader", # target_model: "TargetModelHeader", # target_variant: "TargetVariantHeader", # target_container_hostname: "TargetContainerHostnameHeader", # inference_id: "InferenceId", # } # # @!attribute [rw] endpoint_name # The name of the endpoint that you specified when you created the # endpoint using the [CreateEndpoint][1] API. # # # # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html # @return [String] # # @!attribute [rw] body # Provides input data, in the format specified in the `ContentType` # request header. Amazon SageMaker passes all of the data in the body # to the model. # # For information about the format of the request body, see [Common # Data Formats-Inference][1]. # # # # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html # @return [String] # # @!attribute [rw] content_type # The MIME type of the input data in the request body. # @return [String] # # @!attribute [rw] accept # The desired MIME type of the inference in the response. # @return [String] # # @!attribute [rw] custom_attributes # Provides additional information about a request for an inference # submitted to a model hosted at an Amazon SageMaker endpoint. The # information is an opaque value that is forwarded verbatim. You could # use this value, for example, to provide an ID that you can use to # track a request or to provide other metadata that a service endpoint # was programmed to process. The value must consist of no more than # 1024 visible US-ASCII characters as specified in [Section 3.3.6. # Field Value Components][1] of the Hypertext Transfer Protocol # (HTTP/1.1). # # The code in your model is responsible for setting or updating any # custom attributes in the response. If your code does not set this # value in the response, an empty value is returned. For example, if a # custom attribute represents the trace ID, your model can prepend the # custom attribute with `Trace ID:` in your post-processing function. # # This feature is currently supported in the AWS SDKs but not in the # Amazon SageMaker Python SDK. # # # # [1]: https://tools.ietf.org/html/rfc7230#section-3.2.6 # @return [String] # # @!attribute [rw] target_model # The model to request for inference when invoking a multi-model # endpoint. # @return [String] # # @!attribute [rw] target_variant # Specify the production variant to send the inference request to when # invoking an endpoint that is running two or more variants. Note that # this parameter overrides the default behavior for the endpoint, # which is to distribute the invocation traffic based on the variant # weights. # # For information about how to use variant targeting to perform a/b # testing, see [Test models in production][1] # # # # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/model-ab-testing.html # @return [String] # # @!attribute [rw] target_container_hostname # If the endpoint hosts multiple containers and is configured to use # direct invocation, this parameter specifies the host name of the # container to invoke. # @return [String] # # @!attribute [rw] inference_id # If you provide a value, it is added to the captured data when you # enable data capture on the endpoint. For information about data # capture, see [Capture Data][1]. # # # # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/runtime.sagemaker-2017-05-13/InvokeEndpointInput AWS API Documentation # class InvokeEndpointInput < Struct.new( :endpoint_name, :body, :content_type, :accept, :custom_attributes, :target_model, :target_variant, :target_container_hostname, :inference_id) SENSITIVE = [:body, :custom_attributes] include Aws::Structure end # @!attribute [rw] body # Includes the inference provided by the model. # # For information about the format of the response body, see [Common # Data Formats-Inference][1]. # # # # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html # @return [String] # # @!attribute [rw] content_type # The MIME type of the inference returned in the response body. # @return [String] # # @!attribute [rw] invoked_production_variant # Identifies the production variant that was invoked. # @return [String] # # @!attribute [rw] custom_attributes # Provides additional information in the response about the inference # returned by a model hosted at an Amazon SageMaker endpoint. The # information is an opaque value that is forwarded verbatim. You could # use this value, for example, to return an ID received in the # `CustomAttributes` header of a request or other metadata that a # service endpoint was programmed to produce. The value must consist # of no more than 1024 visible US-ASCII characters as specified in # [Section 3.3.6. Field Value Components][1] of the Hypertext Transfer # Protocol (HTTP/1.1). If the customer wants the custom attribute # returned, the model must set the custom attribute to be included on # the way back. # # The code in your model is responsible for setting or updating any # custom attributes in the response. If your code does not set this # value in the response, an empty value is returned. For example, if a # custom attribute represents the trace ID, your model can prepend the # custom attribute with `Trace ID:` in your post-processing function. # # This feature is currently supported in the AWS SDKs but not in the # Amazon SageMaker Python SDK. # # # # [1]: https://tools.ietf.org/html/rfc7230#section-3.2.6 # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/runtime.sagemaker-2017-05-13/InvokeEndpointOutput AWS API Documentation # class InvokeEndpointOutput < Struct.new( :body, :content_type, :invoked_production_variant, :custom_attributes) SENSITIVE = [:body, :custom_attributes] include Aws::Structure end # Model (owned by the customer in the container) returned 4xx or 5xx # error code. # # @!attribute [rw] message # @return [String] # # @!attribute [rw] original_status_code # Original status code. # @return [Integer] # # @!attribute [rw] original_message # Original message. # @return [String] # # @!attribute [rw] log_stream_arn # The Amazon Resource Name (ARN) of the log stream. # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/runtime.sagemaker-2017-05-13/ModelError AWS API Documentation # class ModelError < Struct.new( :message, :original_status_code, :original_message, :log_stream_arn) SENSITIVE = [] include Aws::Structure end # The service is unavailable. Try your call again. # # @!attribute [rw] message # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/runtime.sagemaker-2017-05-13/ServiceUnavailable AWS API Documentation # class ServiceUnavailable < Struct.new( :message) SENSITIVE = [] include Aws::Structure end # Inspect your request and try again. # # @!attribute [rw] message # @return [String] # # @see http://docs.aws.amazon.com/goto/WebAPI/runtime.sagemaker-2017-05-13/ValidationError AWS API Documentation # class ValidationError < Struct.new( :message) SENSITIVE = [] include Aws::Structure end end end