/******/ (function(modules) { // webpackBootstrap
/******/ // The module cache
/******/ var installedModules = {};
/******/
/******/ // The require function
/******/ function __webpack_require__(moduleId) {
/******/
/******/ // Check if module is in cache
/******/ if(installedModules[moduleId]) {
/******/ return installedModules[moduleId].exports;
/******/ }
/******/ // Create a new module (and put it into the cache)
/******/ var module = installedModules[moduleId] = {
/******/ i: moduleId,
/******/ l: false,
/******/ exports: {}
/******/ };
/******/
/******/ // Execute the module function
/******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
/******/
/******/ // Flag the module as loaded
/******/ module.l = true;
/******/
/******/ // Return the exports of the module
/******/ return module.exports;
/******/ }
/******/
/******/
/******/ // expose the modules object (__webpack_modules__)
/******/ __webpack_require__.m = modules;
/******/
/******/ // expose the module cache
/******/ __webpack_require__.c = installedModules;
/******/
/******/ // define getter function for harmony exports
/******/ __webpack_require__.d = function(exports, name, getter) {
/******/ if(!__webpack_require__.o(exports, name)) {
/******/ Object.defineProperty(exports, name, {
/******/ configurable: false,
/******/ enumerable: true,
/******/ get: getter
/******/ });
/******/ }
/******/ };
/******/
/******/ // getDefaultExport function for compatibility with non-harmony modules
/******/ __webpack_require__.n = function(module) {
/******/ var getter = module && module.__esModule ?
/******/ function getDefault() { return module['default']; } :
/******/ function getModuleExports() { return module; };
/******/ __webpack_require__.d(getter, 'a', getter);
/******/ return getter;
/******/ };
/******/
/******/ // Object.prototype.hasOwnProperty.call
/******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };
/******/
/******/ // __webpack_public_path__
/******/ __webpack_require__.p = "";
/******/
/******/ // Load entry module and return exports
/******/ return __webpack_require__(__webpack_require__.s = 0);
/******/ })
/************************************************************************/
/******/ ([
/* 0 */
/***/ (function(module, exports, __webpack_require__) {
__webpack_require__(1);
module.exports = __webpack_require__(4);
/***/ }),
/* 1 */
/***/ (function(module, exports, __webpack_require__) {
var L;
L = __webpack_require__(2);
__webpack_require__(3);
L.ReactiveMeasure = {};
L.ReactiveMeasure.Draw = {};
L.ReactiveMeasure.Edit = {};
L.ReactiveMeasure.Draw.Event = {};
L.ReactiveMeasure.Edit.Event = {};
L.ReactiveMeasure.Draw.Event.MOVE = "reactiveMeasure:draw:move";
L.ReactiveMeasure.Edit.Event.MOVE = "reactiveMeasure:edit:move";
module.exports = L.ReactiveMeasureControl = L.Control.extend({
options: {
position: 'bottomright',
metric: true,
feet: false,
measure: {
perimeter: 0,
area: 0
}
},
initialize: function(layers, options) {
if (options == null) {
options = {};
}
L.Util.setOptions(this, options);
this.options.measure.perimeter = 0;
this.options.measure.area = 0;
if (layers.getLayers().length > 0) {
return layers.eachLayer((function(_this) {
return function(layer) {
var m;
if (typeof layer.getMeasure === 'function') {
m = layer.getMeasure();
_this.options.measure.perimeter += m.perimeter;
return _this.options.measure.area += m.area;
}
};
})(this));
}
},
onAdd: function(map) {
this._container = L.DomUtil.create('div', "reactive-measure-control " + map._leaflet_id);
map.reactiveMeasureControl = this;
if (map && this._container) {
this.updateContent(this.options.measure);
}
return this._container;
},
updateContent: function(measure, options) {
var text;
if (measure == null) {
measure = {};
}
if (options == null) {
options = {};
}
text = '';
if (measure['perimeter']) {
text += "" + (L.GeometryUtil.readableDistance(measure.perimeter, !!this.options.metric, !!options.feet)) + "";
}
if (measure['area']) {
text += "" + (L.GeometryUtil.readableArea(measure.area, !!this.options.metric)) + "";
}
if ((options.selection != null) && options.selection === true) {
L.DomUtil.addClass(this._container, 'selection');
} else {
L.DomUtil.removeClass(this._container, 'selection');
}
this._container.innerHTML = text;
}
});
L.FeatureGroup.include({
getMeasure: function() {
var measure;
measure = {
perimeter: 0,
area: 0
};
this.eachLayer(function(layer) {
var m;
m = layer.getMeasure();
measure.perimeter += m.perimeter;
return measure.area += m.area;
});
return measure;
}
});
L.Polygon.include({
/*
* Get centroid of the polygon in square meters
* Portage from leaflet1.0.0-rc1: https://github.com/Leaflet/Leaflet/blob/master/src/layer/vector/Polygon.js
* @return {number} polygon centroid
*/
__getCenter: function() {
var area, center, f, i, j, len, p1, p2, points, x, y;
this.__project();
points = this._rings[0];
len = points.length;
if (!len) {
return null;
}
area = x = y = 0;
i = 0;
j = len - 1;
while (i < len) {
p1 = points[i];
p2 = points[j];
f = p1.y * p2.x - (p2.y * p1.x);
x += (p1.x + p2.x) * f;
y += (p1.y + p2.y) * f;
area += f * 3;
j = i++;
}
if (area === 0) {
center = points[0];
} else {
center = [x / area, y / area];
}
return this._map.layerPointToLatLng(center);
},
/*
* Return LatLngs as array of [lat, lng] pair.
* @return {Array} [[lat,lng], [lat,lng]]
*/
getLatLngsAsArray: function() {
var arr, k, latlng, len1, ref;
arr = [];
ref = this._latlngs[0];
for (k = 0, len1 = ref.length; k < len1; k++) {
latlng = ref[k];
arr.push([latlng.lat, latlng.lng]);
}
return arr;
}
});
L.Polyline.include({
/*
* Return LatLngs as array of [lat, lng] pair.
* @return {Array} [[lat,lng], [lat,lng]]
*/
getLatLngsAsArray: function() {
var arr, k, latlng, len1, ref;
arr = [];
ref = this._latlngs;
for (k = 0, len1 = ref.length; k < len1; k++) {
latlng = ref[k];
arr.push([latlng.lat, latlng.lng]);
}
return arr;
},
/*
* Get center of the polyline in meters
* Portage from leaflet1.0.0-rc1: https://github.com/Leaflet/Leaflet/blob/master/src/layer/vector/Polyline.js
* @return {number} polyline center
*/
__getCenter: function() {
var dist, halfDist, i, len, p1, p2, points, ratio, segDist;
this.__project();
i = void 0;
halfDist = void 0;
segDist = void 0;
dist = void 0;
p1 = void 0;
p2 = void 0;
ratio = void 0;
points = this._rings[0];
len = points.length;
if (!len) {
return null;
}
i = 0;
halfDist = 0;
while (i < len - 1) {
halfDist += points[i].distanceTo(points[i + 1]) / 2;
i++;
}
if (halfDist === 0) {
return this._map.layerPointToLatLng(points[0]);
}
i = 0;
dist = 0;
while (i < len - 1) {
p1 = points[i];
p2 = points[i + 1];
segDist = p1.distanceTo(p2);
dist += segDist;
if (dist > halfDist) {
ratio = (dist - halfDist) / segDist;
return this._map.layerPointToLatLng([p2.x - (ratio * (p2.x - p1.x)), p2.y - (ratio * (p2.y - p1.y))]);
}
i++;
}
},
__project: function() {
var pxBounds;
pxBounds = new L.Bounds;
this._rings = [];
this.__projectLatlngs(this._latlngs, this._rings, pxBounds);
},
__projectLatlngs: function(latlngs, result, projectedBounds) {
var flat, i, len, ring;
flat = latlngs[0] instanceof L.LatLng;
len = latlngs.length;
i = void 0;
ring = void 0;
if (flat) {
ring = [];
i = 0;
while (i < len) {
ring[i] = this._map.latLngToLayerPoint(latlngs[i]);
projectedBounds.extend(ring[i]);
i++;
}
result.push(ring);
} else {
i = 0;
while (i < len) {
this.__projectLatlngs(latlngs[i], result, projectedBounds);
i++;
}
}
},
getMeasure: function() {
return L.GeographicUtil.Polygon(this.getLatLngsAsArray());
}
});
L.Draw.Polyline.include({
__addHooks: L.Draw.Polyline.prototype.addHooks,
__removeHooks: L.Draw.Polyline.prototype.removeHooks,
__vertexChanged: L.Draw.Polyline.prototype._vertexChanged,
_vertexChanged: function(e) {
this.__vertexChanged.apply(this, arguments);
if (!this._map.reactiveMeasureControl.options.tooltip && (this._tooltip != null)) {
L.DomUtil.setOpacity(this._tooltip._container, 0);
return L.DomUtil.setPosition(this._tooltip._container, L.point(0, 0));
}
},
__onMouseMove: function(e) {
var center, clone, k, latLng, latLngArray, len1, measure, mouseLatLng, newPos, ref;
if (!e.target.reactiveMeasureControl.options.tooltip && (this._tooltip != null)) {
L.DomUtil.setOpacity(this._tooltip._container, 0);
L.DomUtil.setPosition(this._tooltip._container, L.point(0, 0));
}
if (!(this._markers.length > 0)) {
return;
}
newPos = this._map.mouseEventToLayerPoint(e.originalEvent);
mouseLatLng = this._map.layerPointToLatLng(newPos);
latLngArray = [];
ref = this._poly.getLatLngs();
for (k = 0, len1 = ref.length; k < len1; k++) {
latLng = ref[k];
latLngArray.push(latLng);
}
latLngArray.push(mouseLatLng);
if (this._markers.length === 1) {
clone = L.polyline(latLngArray);
}
if (this._markers.length >= 2) {
clone = L.polygon(latLngArray);
}
clone._map = this._map;
center = clone.__getCenter();
measure = L.GeographicUtil.Polygon(clone.getLatLngsAsArray());
e.target.reactiveMeasureControl.updateContent(measure, {
selection: true
});
if (e.target.reactiveMeasureControl.options.tooltip != null) {
this._tooltip.__updateTooltipMeasure(center, measure, e.target.reactiveMeasureControl.options);
}
return this._map.fire(L.ReactiveMeasure.Draw.Event.MOVE, {
measure: measure
});
},
addHooks: function() {
this.__addHooks.apply(this, arguments);
this._map.on('mousemove', this.__onMouseMove, this);
},
removeHooks: function() {
var measure;
if (this._map.reactiveMeasureControl) {
measure = L.GeographicUtil.Polygon(this._poly.getLatLngsAsArray());
if (this._poly._map != null) {
this._poly._map.reactiveMeasureControl.updateContent(measure, {
selection: false
});
}
this._map.off('mousemove');
}
this.__removeHooks.apply(this, arguments);
}
});
L.Edit.Poly.include({
__addHooks: L.Edit.Poly.prototype.addHooks,
__removeHooks: L.Edit.Poly.prototype.removeHooks,
__onHandlerDrag: (function(_this) {
return function(e) {
var _poly, center, measure;
_poly = e.target.editing._poly;
center = _poly.__getCenter();
measure = L.GeographicUtil.Polygon(_poly.getLatLngsAsArray());
L.extend(L.Draw.Polyline.prototype.options, {
target: e.marker.getLatLng()
});
if (_poly._map != null) {
_poly._map.reactiveMeasureControl.updateContent(measure, {
selection: true
});
}
return _poly._map.fire(L.ReactiveMeasure.Edit.Event.MOVE, {
measure: measure
});
};
})(this),
addHooks: function() {
this.__addHooks.apply(this, arguments);
return this._poly.on('editdrag', this.__onHandlerDrag, this);
},
removeHooks: function() {
var measure;
measure = L.GeographicUtil.Polygon(this._poly.getLatLngsAsArray());
if (this._poly._map != null) {
this._poly._map.reactiveMeasureControl.updateContent(measure, {
selection: false
});
}
if (L.EditToolbar.reactiveMeasure) {
this._poly.off('editdrag');
}
return this.__removeHooks.apply(this, arguments);
}
});
L.Edit.PolyVerticesEdit.include({
__onTouchMove: L.Edit.PolyVerticesEdit.prototype._onTouchMove,
__removeMarker: L.Edit.PolyVerticesEdit.prototype._removeMarker,
_onMarkerDrag: function(e) {
var marker;
marker = e.target;
L.extend(marker._origLatLng, marker._latlng);
if (marker._middleLeft) {
marker._middleLeft.setLatLng(this._getMiddleLatLng(marker._prev, marker));
}
if (marker._middleRight) {
marker._middleRight.setLatLng(this._getMiddleLatLng(marker, marker._next));
}
this._poly.redraw();
this._poly.fire('editdrag', {
marker: e.target
});
},
_onTouchMove: function(e) {
this.__onTouchMove.apply(this, arguments);
return this._poly.fire('editdrag');
},
_removeMarker: function(marker) {
this.__removeMarker.apply(this, arguments);
return this._poly.fire('editdrag', {
marker: marker
});
}
});
L.LatLng.prototype.toArray = function() {
return [this.lat, this.lng];
};
L.Draw.Tooltip.include({
__initialize: L.Draw.Tooltip.prototype.initialize,
__dispose: L.Draw.Tooltip.prototype.dispose,
initialize: function(map, options) {
if (options == null) {
options = {};
}
return this.__initialize.apply(this, arguments);
},
dispose: function() {
this._map.off('mouseover');
return this.__dispose.apply(this, arguments);
},
__updateTooltipMeasure: function(latLng, measure, options) {
var labelText;
if (measure == null) {
measure = {};
}
if (options == null) {
options = {};
}
labelText = {
text: ''
};
if (measure['perimeter']) {
labelText['text'] += "" + (L.GeometryUtil.readableDistance(measure.perimeter, !!options.metric, !!options.feet)) + "";
}
if (measure['area']) {
labelText['text'] += "" + (L.GeometryUtil.readableArea(measure.area, !!options.metric)) + "";
}
if (latLng) {
this.updateContent(labelText);
this.__updatePosition(latLng, options);
}
},
__updatePosition: function(latlng, options) {
var container, container_width, labelWidth, map_width, pos, styles;
if (options == null) {
options = {};
}
pos = this._map.latLngToLayerPoint(latlng);
labelWidth = this._container.offsetWidth;
map_width = this._map._container.offsetWidth;
L.DomUtil.removeClass(this._container, 'leaflet-draw-tooltip-left');
if (this._container) {
this._container.style.visibility = 'inherit';
container = this._map.layerPointToContainerPoint(pos);
styles = window.getComputedStyle(this._container);
container_width = this._container.offsetWidth + parseInt(styles.paddingLeft) + parseInt(styles.paddingRight) + parseInt(styles.marginLeft) + parseInt(styles.marginRight);
if (container.x < 0 || container.x > (map_width - container_width) || container.y < this._container.offsetHeight) {
pos = pos.add(L.point(-container_width, 0));
L.DomUtil.addClass(this._container, 'leaflet-draw-tooltip-left');
}
return L.DomUtil.setPosition(this._container, pos);
}
},
hide: function() {
return this._container.style.visibility = 'hidden';
}
});
/***/ }),
/* 2 */
/***/ (function(module, exports) {
module.exports = L;
/***/ }),
/* 3 */
/***/ (function(module, exports) {
/******/ (function(modules) { // webpackBootstrap
/******/ // The module cache
/******/ var installedModules = {};
/******/
/******/ // The require function
/******/ function __webpack_require__(moduleId) {
/******/
/******/ // Check if module is in cache
/******/ if(installedModules[moduleId]) {
/******/ return installedModules[moduleId].exports;
/******/ }
/******/ // Create a new module (and put it into the cache)
/******/ var module = installedModules[moduleId] = {
/******/ i: moduleId,
/******/ l: false,
/******/ exports: {}
/******/ };
/******/
/******/ // Execute the module function
/******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
/******/
/******/ // Flag the module as loaded
/******/ module.l = true;
/******/
/******/ // Return the exports of the module
/******/ return module.exports;
/******/ }
/******/
/******/
/******/ // expose the modules object (__webpack_modules__)
/******/ __webpack_require__.m = modules;
/******/
/******/ // expose the module cache
/******/ __webpack_require__.c = installedModules;
/******/
/******/ // define getter function for harmony exports
/******/ __webpack_require__.d = function(exports, name, getter) {
/******/ if(!__webpack_require__.o(exports, name)) {
/******/ Object.defineProperty(exports, name, {
/******/ configurable: false,
/******/ enumerable: true,
/******/ get: getter
/******/ });
/******/ }
/******/ };
/******/
/******/ // getDefaultExport function for compatibility with non-harmony modules
/******/ __webpack_require__.n = function(module) {
/******/ var getter = module && module.__esModule ?
/******/ function getDefault() { return module['default']; } :
/******/ function getModuleExports() { return module; };
/******/ __webpack_require__.d(getter, 'a', getter);
/******/ return getter;
/******/ };
/******/
/******/ // Object.prototype.hasOwnProperty.call
/******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };
/******/
/******/ // __webpack_public_path__
/******/ __webpack_require__.p = "";
/******/
/******/ // Load entry module and return exports
/******/ return __webpack_require__(__webpack_require__.s = 0);
/******/ })
/************************************************************************/
/******/ ([
/* 0 */
/***/ (function(module, exports, __webpack_require__) {
module.exports = __webpack_require__(1);
/***/ }),
/* 1 */
/***/ (function(module, exports, __webpack_require__) {
var GeographicLib, L;
L = __webpack_require__(2);
GeographicLib = __webpack_require__(3);
L.GeographicUtil = (function() {
function GeographicUtil() {}
GeographicUtil.Polygon = function(points, polyline) {
var geod, i, j, len, len1, point, poly, poly2;
if (polyline == null) {
polyline = false;
}
geod = GeographicLib.Geodesic.WGS84;
poly = geod.Polygon(false);
for (i = 0, len = points.length; i < len; i++) {
point = points[i];
poly.AddPoint(point[0], point[1]);
}
poly = poly.Compute(false, true);
poly2 = geod.Polygon(true);
for (j = 0, len1 = points.length; j < len1; j++) {
point = points[j];
poly2.AddPoint(point[0], point[1]);
}
poly2 = poly2.Compute(false, true);
return {
extrapolatedPerimeter: poly.perimeter,
extrapolatedArea: Math.abs(poly.area),
perimeter: poly2.perimeter
};
};
GeographicUtil.distance = function(a, b) {
var geod, r;
geod = GeographicLib.Geodesic.WGS84;
r = geod.Inverse(a[0], a[1], b[0], b[1]);
return r.s12.toFixed(3);
};
return GeographicUtil;
})();
/***/ }),
/* 2 */
/***/ (function(module, exports) {
module.exports = L;
/***/ }),
/* 3 */
/***/ (function(module, exports, __webpack_require__) {
var __WEBPACK_AMD_DEFINE_ARRAY__, __WEBPACK_AMD_DEFINE_RESULT__;/*
* Geodesic routines from GeographicLib translated to JavaScript. See
* https://geographiclib.sourceforge.io/html/js/
*
* The algorithms are derived in
*
* Charles F. F. Karney,
* Algorithms for geodesics, J. Geodesy 87, 43-55 (2013),
* https://doi.org/10.1007/s00190-012-0578-z
* Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
*
* This file is the concatenation and compression of the JavaScript files in
* doc/scripts/GeographicLib in the source tree for GeographicLib.
*
* Copyright (c) Charles Karney (2011-2015) and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
*
* Version: 1.49
* File inventory:
* Math.js Geodesic.js GeodesicLine.js PolygonArea.js DMS.js
*/
(function(cb) {
/**************** Math.js ****************/
/*
* Math.js
* Transcription of Math.hpp, Constants.hpp, and Accumulator.hpp into
* JavaScript.
*
* Copyright (c) Charles Karney (2011-2017) and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
*/
/**
* @namespace GeographicLib
* @description The parent namespace for the following modules:
* - {@link module:GeographicLib/Geodesic GeographicLib/Geodesic} The main
* engine for solving geodesic problems via the
* {@link module:GeographicLib/Geodesic.Geodesic Geodesic} class.
* - {@link module:GeographicLib/GeodesicLine GeographicLib/GeodesicLine}
* computes points along a single geodesic line via the
* {@link module:GeographicLib/GeodesicLine.GeodesicLine GeodesicLine}
* class.
* - {@link module:GeographicLib/PolygonArea GeographicLib/PolygonArea}
* computes the area of a geodesic polygon via the
* {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea}
* class.
* - {@link module:GeographicLib/DMS GeographicLib/DMS} handles the decoding
* and encoding of angles in degree, minutes, and seconds, via static
* functions in this module.
* - {@link module:GeographicLib/Constants GeographicLib/Constants} defines
* constants specifying the version numbers and the parameters for the WGS84
* ellipsoid.
*
* The following modules are used internally by the package:
* - {@link module:GeographicLib/Math GeographicLib/Math} defines various
* mathematical functions.
* - {@link module:GeographicLib/Accumulator GeographicLib/Accumulator}
* interally used by
* {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea} (via the
* {@link module:GeographicLib/Accumulator.Accumulator Accumulator} class)
* for summing the contributions to the area of a polygon.
*/
"use strict";
var GeographicLib = {};
GeographicLib.Constants = {};
GeographicLib.Math = {};
GeographicLib.Accumulator = {};
(function(
/**
* @exports GeographicLib/Constants
* @description Define constants defining the version and WGS84 parameters.
*/
c) {
/**
* @constant
* @summary WGS84 parameters.
* @property {number} a the equatorial radius (meters).
* @property {number} f the flattening.
*/
c.WGS84 = { a: 6378137, f: 1/298.257223563 };
/**
* @constant
* @summary an array of version numbers.
* @property {number} major the major version number.
* @property {number} minor the minor version number.
* @property {number} patch the patch number.
*/
c.version = { major: 1, minor: 49, patch: 0 };
/**
* @constant
* @summary version string
*/
c.version_string = "1.49";
})(GeographicLib.Constants);
(function(
/**
* @exports GeographicLib/Math
* @description Some useful mathematical constants and functions (mainly for
* internal use).
*/
m) {
/**
* @summary The number of digits of precision in floating-point numbers.
* @constant {number}
*/
m.digits = 53;
/**
* @summary The machine epsilon.
* @constant {number}
*/
m.epsilon = Math.pow(0.5, m.digits - 1);
/**
* @summary The factor to convert degrees to radians.
* @constant {number}
*/
m.degree = Math.PI/180;
/**
* @summary Square a number.
* @param {number} x the number.
* @returns {number} the square.
*/
m.sq = function(x) { return x * x; };
/**
* @summary The hypotenuse function.
* @param {number} x the first side.
* @param {number} y the second side.
* @returns {number} the hypotenuse.
*/
m.hypot = function(x, y) {
var a, b;
x = Math.abs(x);
y = Math.abs(y);
a = Math.max(x, y); b = Math.min(x, y) / (a ? a : 1);
return a * Math.sqrt(1 + b * b);
};
/**
* @summary Cube root function.
* @param {number} x the argument.
* @returns {number} the real cube root.
*/
m.cbrt = function(x) {
var y = Math.pow(Math.abs(x), 1/3);
return x < 0 ? -y : y;
};
/**
* @summary The log1p function.
* @param {number} x the argument.
* @returns {number} log(1 + x).
*/
m.log1p = function(x) {
var y = 1 + x,
z = y - 1;
// Here's the explanation for this magic: y = 1 + z, exactly, and z
// approx x, thus log(y)/z (which is nearly constant near z = 0) returns
// a good approximation to the true log(1 + x)/x. The multiplication x *
// (log(y)/z) introduces little additional error.
return z === 0 ? x : x * Math.log(y) / z;
};
/**
* @summary Inverse hyperbolic tangent.
* @param {number} x the argument.
* @returns {number} tanh−1 x.
*/
m.atanh = function(x) {
var y = Math.abs(x); // Enforce odd parity
y = m.log1p(2 * y/(1 - y))/2;
return x < 0 ? -y : y;
};
/**
* @summary Copy the sign.
* @param {number} x gives the magitude of the result.
* @param {number} y gives the sign of the result.
* @returns {number} value with the magnitude of x and with the sign of y.
*/
m.copysign = function(x, y) {
return Math.abs(x) * (y < 0 || (y === 0 && 1/y < 0) ? -1 : 1);
};
/**
* @summary An error-free sum.
* @param {number} u
* @param {number} v
* @returns {object} sum with sum.s = round(u + v) and sum.t is u + v −
* round(u + v)
*/
m.sum = function(u, v) {
var s = u + v,
up = s - v,
vpp = s - up,
t;
up -= u;
vpp -= v;
t = -(up + vpp);
// u + v = s + t
// = round(u + v) + t
return {s: s, t: t};
};
/**
* @summary Evaluate a polynomial.
* @param {integer} N the order of the polynomial.
* @param {array} p the coefficient array (of size N + 1) (leading
* order coefficient first)
* @param {number} x the variable.
* @returns {number} the value of the polynomial.
*/
m.polyval = function(N, p, s, x) {
var y = N < 0 ? 0 : p[s++];
while (--N >= 0) y = y * x + p[s++];
return y;
};
/**
* @summary Coarsen a value close to zero.
* @param {number} x
* @returns {number} the coarsened value.
*/
m.AngRound = function(x) {
// The makes the smallest gap in x = 1/16 - nextafter(1/16, 0) = 1/2^57 for
// reals = 0.7 pm on the earth if x is an angle in degrees. (This is about
// 1000 times more resolution than we get with angles around 90 degrees.)
// We use this to avoid having to deal with near singular cases when x is
// non-zero but tiny (e.g., 1.0e-200). This converts -0 to +0; however
// tiny negative numbers get converted to -0.
if (x === 0) return x;
var z = 1/16,
y = Math.abs(x);
// The compiler mustn't "simplify" z - (z - y) to y
y = y < z ? z - (z - y) : y;
return x < 0 ? -y : y;
};
/**
* @summary Normalize an angle.
* @param {number} x the angle in degrees.
* @returns {number} the angle reduced to the range (−180°,
* 180°].
*/
m.AngNormalize = function(x) {
// Place angle in [-180, 180).
x = x % 360;
return x <= -180 ? x + 360 : (x <= 180 ? x : x - 360);
};
/**
* @summary Normalize a latitude.
* @param {number} x the angle in degrees.
* @returns {number} x if it is in the range [−90°, 90°],
* otherwise return NaN.
*/
m.LatFix = function(x) {
// Replace angle with NaN if outside [-90, 90].
return Math.abs(x) > 90 ? Number.NaN : x;
};
/**
* @summary The exact difference of two angles reduced to (−180°,
* 180°]
* @param {number} x the first angle in degrees.
* @param {number} y the second angle in degrees.
* @return {object} diff the exact difference, y − x.
*
* This computes z = y − x exactly, reduced to (−180°,
* 180°]; and then sets diff.s = d = round(z) and diff.t = e = z −
* round(z). If d = −180, then e > 0; If d = 180, then e ≤ 0.
*/
m.AngDiff = function(x, y) {
// Compute y - x and reduce to [-180,180] accurately.
var r = m.sum(m.AngNormalize(-x), m.AngNormalize(y)),
d = m.AngNormalize(r.s),
t = r.t;
return m.sum(d === 180 && t > 0 ? -180 : d, t);
};
/**
* @summary Evaluate the sine and cosine function with the argument in
* degrees
* @param {number} x in degrees.
* @returns {object} r with r.s = sin(x) and r.c = cos(x).
*/
m.sincosd = function(x) {
// In order to minimize round-off errors, this function exactly reduces
// the argument to the range [-45, 45] before converting it to radians.
var r, q, s, c, sinx, cosx;
r = x % 360;
q = Math.floor(r / 90 + 0.5);
r -= 90 * q;
// now abs(r) <= 45
r *= this.degree;
// Possibly could call the gnu extension sincos
s = Math.sin(r); c = Math.cos(r);
switch (q & 3) {
case 0: sinx = s; cosx = c; break;
case 1: sinx = c; cosx = -s; break;
case 2: sinx = -s; cosx = -c; break;
default: sinx = -c; cosx = s; break; // case 3
}
if (x !== 0) { sinx += 0; cosx += 0; }
return {s: sinx, c: cosx};
};
/**
* @summary Evaluate the atan2 function with the result in degrees
* @param {number} y
* @param {number} x
* @returns atan2(y, x) in degrees, in the range (−180°
* 180°].
*/
m.atan2d = function(y, x) {
// In order to minimize round-off errors, this function rearranges the
// arguments so that result of atan2 is in the range [-pi/4, pi/4] before
// converting it to degrees and mapping the result to the correct
// quadrant.
var q = 0, t, ang;
if (Math.abs(y) > Math.abs(x)) { t = x; x = y; y = t; q = 2; }
if (x < 0) { x = -x; ++q; }
// here x >= 0 and x >= abs(y), so angle is in [-pi/4, pi/4]
ang = Math.atan2(y, x) / this.degree;
switch (q) {
// Note that atan2d(-0.0, 1.0) will return -0. However, we expect that
// atan2d will not be called with y = -0. If need be, include
//
// case 0: ang = 0 + ang; break;
//
// and handle mpfr as in AngRound.
case 1: ang = (y >= 0 ? 180 : -180) - ang; break;
case 2: ang = 90 - ang; break;
case 3: ang = -90 + ang; break;
}
return ang;
};
})(GeographicLib.Math);
(function(
/**
* @exports GeographicLib/Accumulator
* @description Accurate summation via the
* {@link module:GeographicLib/Accumulator.Accumulator Accumulator} class
* (mainly for internal use).
*/
a, m) {
/**
* @class
* @summary Accurate summation of many numbers.
* @classdesc This allows many numbers to be added together with twice the
* normal precision. In the documentation of the member functions, sum
* stands for the value currently held in the accumulator.
* @param {number | Accumulator} [y = 0] set sum = y.
*/
a.Accumulator = function(y) {
this.Set(y);
};
/**
* @summary Set the accumulator to a number.
* @param {number | Accumulator} [y = 0] set sum = y.
*/
a.Accumulator.prototype.Set = function(y) {
if (!y) y = 0;
if (y.constructor === a.Accumulator) {
this._s = y._s;
this._t = y._t;
} else {
this._s = y;
this._t = 0;
}
};
/**
* @summary Add a number to the accumulator.
* @param {number} [y = 0] set sum += y.
*/
a.Accumulator.prototype.Add = function(y) {
// Here's Shewchuk's solution...
// Accumulate starting at least significant end
var u = m.sum(y, this._t),
v = m.sum(u.s, this._s);
u = u.t;
this._s = v.s;
this._t = v.t;
// Start is _s, _t decreasing and non-adjacent. Sum is now (s + t + u)
// exactly with s, t, u non-adjacent and in decreasing order (except
// for possible zeros). The following code tries to normalize the
// result. Ideally, we want _s = round(s+t+u) and _u = round(s+t+u -
// _s). The follow does an approximate job (and maintains the
// decreasing non-adjacent property). Here are two "failures" using
// 3-bit floats:
//
// Case 1: _s is not equal to round(s+t+u) -- off by 1 ulp
// [12, -1] - 8 -> [4, 0, -1] -> [4, -1] = 3 should be [3, 0] = 3
//
// Case 2: _s+_t is not as close to s+t+u as it shold be
// [64, 5] + 4 -> [64, 8, 1] -> [64, 8] = 72 (off by 1)
// should be [80, -7] = 73 (exact)
//
// "Fixing" these problems is probably not worth the expense. The
// representation inevitably leads to small errors in the accumulated
// values. The additional errors illustrated here amount to 1 ulp of
// the less significant word during each addition to the Accumulator
// and an additional possible error of 1 ulp in the reported sum.
//
// Incidentally, the "ideal" representation described above is not
// canonical, because _s = round(_s + _t) may not be true. For
// example, with 3-bit floats:
//
// [128, 16] + 1 -> [160, -16] -- 160 = round(145).
// But [160, 0] - 16 -> [128, 16] -- 128 = round(144).
//
if (this._s === 0) // This implies t == 0,
this._s = u; // so result is u
else
this._t += u; // otherwise just accumulate u to t.
};
/**
* @summary Return the result of adding a number to sum (but
* don't change sum).
* @param {number} [y = 0] the number to be added to the sum.
* @return sum + y.
*/
a.Accumulator.prototype.Sum = function(y) {
var b;
if (!y)
return this._s;
else {
b = new a.Accumulator(this);
b.Add(y);
return b._s;
}
};
/**
* @summary Set sum = −sum.
*/
a.Accumulator.prototype.Negate = function() {
this._s *= -1;
this._t *= -1;
};
})(GeographicLib.Accumulator, GeographicLib.Math);
/**************** Geodesic.js ****************/
/*
* Geodesic.js
* Transcription of Geodesic.[ch]pp into JavaScript.
*
* See the documentation for the C++ class. The conversion is a literal
* conversion from C++.
*
* The algorithms are derived in
*
* Charles F. F. Karney,
* Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
* https://doi.org/10.1007/s00190-012-0578-z
* Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
*
* Copyright (c) Charles Karney (2011-2017) and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
*/
// Load AFTER Math.js
GeographicLib.Geodesic = {};
GeographicLib.GeodesicLine = {};
GeographicLib.PolygonArea = {};
(function(
/**
* @exports GeographicLib/Geodesic
* @description Solve geodesic problems via the
* {@link module:GeographicLib/Geodesic.Geodesic Geodesic} class.
*/
g, l, p, m, c) {
var GEOGRAPHICLIB_GEODESIC_ORDER = 6,
nA1_ = GEOGRAPHICLIB_GEODESIC_ORDER,
nA2_ = GEOGRAPHICLIB_GEODESIC_ORDER,
nA3_ = GEOGRAPHICLIB_GEODESIC_ORDER,
nA3x_ = nA3_,
nC3x_, nC4x_,
maxit1_ = 20,
maxit2_ = maxit1_ + m.digits + 10,
tol0_ = m.epsilon,
tol1_ = 200 * tol0_,
tol2_ = Math.sqrt(tol0_),
tolb_ = tol0_ * tol1_,
xthresh_ = 1000 * tol2_,
CAP_NONE = 0,
CAP_ALL = 0x1F,
CAP_MASK = CAP_ALL,
OUT_ALL = 0x7F80,
astroid,
A1m1f_coeff, C1f_coeff, C1pf_coeff,
A2m1f_coeff, C2f_coeff,
A3_coeff, C3_coeff, C4_coeff;
g.tiny_ = Math.sqrt(Number.MIN_VALUE);
g.nC1_ = GEOGRAPHICLIB_GEODESIC_ORDER;
g.nC1p_ = GEOGRAPHICLIB_GEODESIC_ORDER;
g.nC2_ = GEOGRAPHICLIB_GEODESIC_ORDER;
g.nC3_ = GEOGRAPHICLIB_GEODESIC_ORDER;
g.nC4_ = GEOGRAPHICLIB_GEODESIC_ORDER;
nC3x_ = (g.nC3_ * (g.nC3_ - 1)) / 2;
nC4x_ = (g.nC4_ * (g.nC4_ + 1)) / 2;
g.CAP_C1 = 1<<0;
g.CAP_C1p = 1<<1;
g.CAP_C2 = 1<<2;
g.CAP_C3 = 1<<3;
g.CAP_C4 = 1<<4;
g.NONE = 0;
g.ARC = 1<<6;
g.LATITUDE = 1<<7 | CAP_NONE;
g.LONGITUDE = 1<<8 | g.CAP_C3;
g.AZIMUTH = 1<<9 | CAP_NONE;
g.DISTANCE = 1<<10 | g.CAP_C1;
g.STANDARD = g.LATITUDE | g.LONGITUDE | g.AZIMUTH | g.DISTANCE;
g.DISTANCE_IN = 1<<11 | g.CAP_C1 | g.CAP_C1p;
g.REDUCEDLENGTH = 1<<12 | g.CAP_C1 | g.CAP_C2;
g.GEODESICSCALE = 1<<13 | g.CAP_C1 | g.CAP_C2;
g.AREA = 1<<14 | g.CAP_C4;
g.ALL = OUT_ALL| CAP_ALL;
g.LONG_UNROLL = 1<<15;
g.OUT_MASK = OUT_ALL| g.LONG_UNROLL;
g.SinCosSeries = function(sinp, sinx, cosx, c) {
// Evaluate
// y = sinp ? sum(c[i] * sin( 2*i * x), i, 1, n) :
// sum(c[i] * cos((2*i+1) * x), i, 0, n-1)
// using Clenshaw summation. N.B. c[0] is unused for sin series
// Approx operation count = (n + 5) mult and (2 * n + 2) add
var k = c.length, // Point to one beyond last element
n = k - (sinp ? 1 : 0),
ar = 2 * (cosx - sinx) * (cosx + sinx), // 2 * cos(2 * x)
y0 = n & 1 ? c[--k] : 0, y1 = 0; // accumulators for sum
// Now n is even
n = Math.floor(n/2);
while (n--) {
// Unroll loop x 2, so accumulators return to their original role
y1 = ar * y0 - y1 + c[--k];
y0 = ar * y1 - y0 + c[--k];
}
return (sinp ? 2 * sinx * cosx * y0 : // sin(2 * x) * y0
cosx * (y0 - y1)); // cos(x) * (y0 - y1)
};
astroid = function(x, y) {
// Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive
// root k. This solution is adapted from Geocentric::Reverse.
var k,
p = m.sq(x),
q = m.sq(y),
r = (p + q - 1) / 6,
S, r2, r3, disc, u, T3, T, ang, v, uv, w;
if ( !(q === 0 && r <= 0) ) {
// Avoid possible division by zero when r = 0 by multiplying
// equations for s and t by r^3 and r, resp.
S = p * q / 4; // S = r^3 * s
r2 = m.sq(r);
r3 = r * r2;
// The discriminant of the quadratic equation for T3. This is
// zero on the evolute curve p^(1/3)+q^(1/3) = 1
disc = S * (S + 2 * r3);
u = r;
if (disc >= 0) {
T3 = S + r3;
// Pick the sign on the sqrt to maximize abs(T3). This
// minimizes loss of precision due to cancellation. The
// result is unchanged because of the way the T is used
// in definition of u.
T3 += T3 < 0 ? -Math.sqrt(disc) : Math.sqrt(disc); // T3 = (r * t)^3
// N.B. cbrt always returns the real root. cbrt(-8) = -2.
T = m.cbrt(T3); // T = r * t
// T can be zero; but then r2 / T -> 0.
u += T + (T !== 0 ? r2 / T : 0);
} else {
// T is complex, but the way u is defined the result is real.
ang = Math.atan2(Math.sqrt(-disc), -(S + r3));
// There are three possible cube roots. We choose the
// root which avoids cancellation. Note that disc < 0
// implies that r < 0.
u += 2 * r * Math.cos(ang / 3);
}
v = Math.sqrt(m.sq(u) + q); // guaranteed positive
// Avoid loss of accuracy when u < 0.
uv = u < 0 ? q / (v - u) : u + v; // u+v, guaranteed positive
w = (uv - q) / (2 * v); // positive?
// Rearrange expression for k to avoid loss of accuracy due to
// subtraction. Division by 0 not possible because uv > 0, w >= 0.
k = uv / (Math.sqrt(uv + m.sq(w)) + w); // guaranteed positive
} else { // q == 0 && r <= 0
// y = 0 with |x| <= 1. Handle this case directly.
// for y small, positive root is k = abs(y)/sqrt(1-x^2)
k = 0;
}
return k;
};
A1m1f_coeff = [
// (1-eps)*A1-1, polynomial in eps2 of order 3
+1, 4, 64, 0, 256
];
// The scale factor A1-1 = mean value of (d/dsigma)I1 - 1
g.A1m1f = function(eps) {
var p = Math.floor(nA1_/2),
t = m.polyval(p, A1m1f_coeff, 0, m.sq(eps)) / A1m1f_coeff[p + 1];
return (t + eps) / (1 - eps);
};
C1f_coeff = [
// C1[1]/eps^1, polynomial in eps2 of order 2
-1, 6, -16, 32,
// C1[2]/eps^2, polynomial in eps2 of order 2
-9, 64, -128, 2048,
// C1[3]/eps^3, polynomial in eps2 of order 1
+9, -16, 768,
// C1[4]/eps^4, polynomial in eps2 of order 1
+3, -5, 512,
// C1[5]/eps^5, polynomial in eps2 of order 0
-7, 1280,
// C1[6]/eps^6, polynomial in eps2 of order 0
-7, 2048
];
// The coefficients C1[l] in the Fourier expansion of B1
g.C1f = function(eps, c) {
var eps2 = m.sq(eps),
d = eps,
o = 0,
l, p;
for (l = 1; l <= g.nC1_; ++l) { // l is index of C1p[l]
p = Math.floor((g.nC1_ - l) / 2); // order of polynomial in eps^2
c[l] = d * m.polyval(p, C1f_coeff, o, eps2) / C1f_coeff[o + p + 1];
o += p + 2;
d *= eps;
}
};
C1pf_coeff = [
// C1p[1]/eps^1, polynomial in eps2 of order 2
+205, -432, 768, 1536,
// C1p[2]/eps^2, polynomial in eps2 of order 2
+4005, -4736, 3840, 12288,
// C1p[3]/eps^3, polynomial in eps2 of order 1
-225, 116, 384,
// C1p[4]/eps^4, polynomial in eps2 of order 1
-7173, 2695, 7680,
// C1p[5]/eps^5, polynomial in eps2 of order 0
+3467, 7680,
// C1p[6]/eps^6, polynomial in eps2 of order 0
+38081, 61440
];
// The coefficients C1p[l] in the Fourier expansion of B1p
g.C1pf = function(eps, c) {
var eps2 = m.sq(eps),
d = eps,
o = 0,
l, p;
for (l = 1; l <= g.nC1p_; ++l) { // l is index of C1p[l]
p = Math.floor((g.nC1p_ - l) / 2); // order of polynomial in eps^2
c[l] = d * m.polyval(p, C1pf_coeff, o, eps2) / C1pf_coeff[o + p + 1];
o += p + 2;
d *= eps;
}
};
A2m1f_coeff = [
// (eps+1)*A2-1, polynomial in eps2 of order 3
-11, -28, -192, 0, 256
];
// The scale factor A2-1 = mean value of (d/dsigma)I2 - 1
g.A2m1f = function(eps) {
var p = Math.floor(nA2_/2),
t = m.polyval(p, A2m1f_coeff, 0, m.sq(eps)) / A2m1f_coeff[p + 1];
return (t - eps) / (1 + eps);
};
C2f_coeff = [
// C2[1]/eps^1, polynomial in eps2 of order 2
+1, 2, 16, 32,
// C2[2]/eps^2, polynomial in eps2 of order 2
+35, 64, 384, 2048,
// C2[3]/eps^3, polynomial in eps2 of order 1
+15, 80, 768,
// C2[4]/eps^4, polynomial in eps2 of order 1
+7, 35, 512,
// C2[5]/eps^5, polynomial in eps2 of order 0
+63, 1280,
// C2[6]/eps^6, polynomial in eps2 of order 0
+77, 2048
];
// The coefficients C2[l] in the Fourier expansion of B2
g.C2f = function(eps, c) {
var eps2 = m.sq(eps),
d = eps,
o = 0,
l, p;
for (l = 1; l <= g.nC2_; ++l) { // l is index of C2[l]
p = Math.floor((g.nC2_ - l) / 2); // order of polynomial in eps^2
c[l] = d * m.polyval(p, C2f_coeff, o, eps2) / C2f_coeff[o + p + 1];
o += p + 2;
d *= eps;
}
};
/**
* @class
* @property {number} a the equatorial radius (meters).
* @property {number} f the flattening.
* @summary Initialize a Geodesic object for a specific ellipsoid.
* @classdesc Performs geodesic calculations on an ellipsoid of revolution.
* The routines for solving the direct and inverse problems return an
* object with some of the following fields set: lat1, lon1, azi1, lat2,
* lon2, azi2, s12, a12, m12, M12, M21, S12. See {@tutorial 2-interface},
* "The results".
* @example
* var GeographicLib = require("geographiclib"),
* geod = GeographicLib.Geodesic.WGS84;
* var inv = geod.Inverse(1,2,3,4);
* console.log("lat1 = " + inv.lat1 + ", lon1 = " + inv.lon1 +
* ", lat2 = " + inv.lat2 + ", lon2 = " + inv.lon2 +
* ",\nazi1 = " + inv.azi1 + ", azi2 = " + inv.azi2 +
* ", s12 = " + inv.s12);
* @param {number} a the equatorial radius of the ellipsoid (meters).
* @param {number} f the flattening of the ellipsoid. Setting f = 0 gives
* a sphere (on which geodesics are great circles). Negative f gives a
* prolate ellipsoid.
* @throws an error if the parameters are illegal.
*/
g.Geodesic = function(a, f) {
this.a = a;
this.f = f;
this._f1 = 1 - this.f;
this._e2 = this.f * (2 - this.f);
this._ep2 = this._e2 / m.sq(this._f1); // e2 / (1 - e2)
this._n = this.f / ( 2 - this.f);
this._b = this.a * this._f1;
// authalic radius squared
this._c2 = (m.sq(this.a) + m.sq(this._b) *
(this._e2 === 0 ? 1 :
(this._e2 > 0 ? m.atanh(Math.sqrt(this._e2)) :
Math.atan(Math.sqrt(-this._e2))) /
Math.sqrt(Math.abs(this._e2))))/2;
// The sig12 threshold for "really short". Using the auxiliary sphere
// solution with dnm computed at (bet1 + bet2) / 2, the relative error in
// the azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2.
// (Error measured for 1/100 < b/a < 100 and abs(f) >= 1/1000. For a given
// f and sig12, the max error occurs for lines near the pole. If the old
// rule for computing dnm = (dn1 + dn2)/2 is used, then the error increases
// by a factor of 2.) Setting this equal to epsilon gives sig12 = etol2.
// Here 0.1 is a safety factor (error decreased by 100) and max(0.001,
// abs(f)) stops etol2 getting too large in the nearly spherical case.
this._etol2 = 0.1 * tol2_ /
Math.sqrt( Math.max(0.001, Math.abs(this.f)) *
Math.min(1.0, 1 - this.f/2) / 2 );
if (!(isFinite(this.a) && this.a > 0))
throw new Error("Equatorial radius is not positive");
if (!(isFinite(this._b) && this._b > 0))
throw new Error("Polar semi-axis is not positive");
this._A3x = new Array(nA3x_);
this._C3x = new Array(nC3x_);
this._C4x = new Array(nC4x_);
this.A3coeff();
this.C3coeff();
this.C4coeff();
};
A3_coeff = [
// A3, coeff of eps^5, polynomial in n of order 0
-3, 128,
// A3, coeff of eps^4, polynomial in n of order 1
-2, -3, 64,
// A3, coeff of eps^3, polynomial in n of order 2
-1, -3, -1, 16,
// A3, coeff of eps^2, polynomial in n of order 2
+3, -1, -2, 8,
// A3, coeff of eps^1, polynomial in n of order 1
+1, -1, 2,
// A3, coeff of eps^0, polynomial in n of order 0
+1, 1
];
// The scale factor A3 = mean value of (d/dsigma)I3
g.Geodesic.prototype.A3coeff = function() {
var o = 0, k = 0,
j, p;
for (j = nA3_ - 1; j >= 0; --j) { // coeff of eps^j
p = Math.min(nA3_ - j - 1, j); // order of polynomial in n
this._A3x[k++] = m.polyval(p, A3_coeff, o, this._n) /
A3_coeff[o + p + 1];
o += p + 2;
}
};
C3_coeff = [
// C3[1], coeff of eps^5, polynomial in n of order 0
+3, 128,
// C3[1], coeff of eps^4, polynomial in n of order 1
+2, 5, 128,
// C3[1], coeff of eps^3, polynomial in n of order 2
-1, 3, 3, 64,
// C3[1], coeff of eps^2, polynomial in n of order 2
-1, 0, 1, 8,
// C3[1], coeff of eps^1, polynomial in n of order 1
-1, 1, 4,
// C3[2], coeff of eps^5, polynomial in n of order 0
+5, 256,
// C3[2], coeff of eps^4, polynomial in n of order 1
+1, 3, 128,
// C3[2], coeff of eps^3, polynomial in n of order 2
-3, -2, 3, 64,
// C3[2], coeff of eps^2, polynomial in n of order 2
+1, -3, 2, 32,
// C3[3], coeff of eps^5, polynomial in n of order 0
+7, 512,
// C3[3], coeff of eps^4, polynomial in n of order 1
-10, 9, 384,
// C3[3], coeff of eps^3, polynomial in n of order 2
+5, -9, 5, 192,
// C3[4], coeff of eps^5, polynomial in n of order 0
+7, 512,
// C3[4], coeff of eps^4, polynomial in n of order 1
-14, 7, 512,
// C3[5], coeff of eps^5, polynomial in n of order 0
+21, 2560
];
// The coefficients C3[l] in the Fourier expansion of B3
g.Geodesic.prototype.C3coeff = function() {
var o = 0, k = 0,
l, j, p;
for (l = 1; l < g.nC3_; ++l) { // l is index of C3[l]
for (j = g.nC3_ - 1; j >= l; --j) { // coeff of eps^j
p = Math.min(g.nC3_ - j - 1, j); // order of polynomial in n
this._C3x[k++] = m.polyval(p, C3_coeff, o, this._n) /
C3_coeff[o + p + 1];
o += p + 2;
}
}
};
C4_coeff = [
// C4[0], coeff of eps^5, polynomial in n of order 0
+97, 15015,
// C4[0], coeff of eps^4, polynomial in n of order 1
+1088, 156, 45045,
// C4[0], coeff of eps^3, polynomial in n of order 2
-224, -4784, 1573, 45045,
// C4[0], coeff of eps^2, polynomial in n of order 3
-10656, 14144, -4576, -858, 45045,
// C4[0], coeff of eps^1, polynomial in n of order 4
+64, 624, -4576, 6864, -3003, 15015,
// C4[0], coeff of eps^0, polynomial in n of order 5
+100, 208, 572, 3432, -12012, 30030, 45045,
// C4[1], coeff of eps^5, polynomial in n of order 0
+1, 9009,
// C4[1], coeff of eps^4, polynomial in n of order 1
-2944, 468, 135135,
// C4[1], coeff of eps^3, polynomial in n of order 2
+5792, 1040, -1287, 135135,
// C4[1], coeff of eps^2, polynomial in n of order 3
+5952, -11648, 9152, -2574, 135135,
// C4[1], coeff of eps^1, polynomial in n of order 4
-64, -624, 4576, -6864, 3003, 135135,
// C4[2], coeff of eps^5, polynomial in n of order 0
+8, 10725,
// C4[2], coeff of eps^4, polynomial in n of order 1
+1856, -936, 225225,
// C4[2], coeff of eps^3, polynomial in n of order 2
-8448, 4992, -1144, 225225,
// C4[2], coeff of eps^2, polynomial in n of order 3
-1440, 4160, -4576, 1716, 225225,
// C4[3], coeff of eps^5, polynomial in n of order 0
-136, 63063,
// C4[3], coeff of eps^4, polynomial in n of order 1
+1024, -208, 105105,
// C4[3], coeff of eps^3, polynomial in n of order 2
+3584, -3328, 1144, 315315,
// C4[4], coeff of eps^5, polynomial in n of order 0
-128, 135135,
// C4[4], coeff of eps^4, polynomial in n of order 1
-2560, 832, 405405,
// C4[5], coeff of eps^5, polynomial in n of order 0
+128, 99099
];
g.Geodesic.prototype.C4coeff = function() {
var o = 0, k = 0,
l, j, p;
for (l = 0; l < g.nC4_; ++l) { // l is index of C4[l]
for (j = g.nC4_ - 1; j >= l; --j) { // coeff of eps^j
p = g.nC4_ - j - 1; // order of polynomial in n
this._C4x[k++] = m.polyval(p, C4_coeff, o, this._n) /
C4_coeff[o + p + 1];
o += p + 2;
}
}
};
g.Geodesic.prototype.A3f = function(eps) {
// Evaluate A3
return m.polyval(nA3x_ - 1, this._A3x, 0, eps);
};
g.Geodesic.prototype.C3f = function(eps, c) {
// Evaluate C3 coeffs
// Elements c[1] thru c[nC3_ - 1] are set
var mult = 1,
o = 0,
l, p;
for (l = 1; l < g.nC3_; ++l) { // l is index of C3[l]
p = g.nC3_ - l - 1; // order of polynomial in eps
mult *= eps;
c[l] = mult * m.polyval(p, this._C3x, o, eps);
o += p + 1;
}
};
g.Geodesic.prototype.C4f = function(eps, c) {
// Evaluate C4 coeffs
// Elements c[0] thru c[g.nC4_ - 1] are set
var mult = 1,
o = 0,
l, p;
for (l = 0; l < g.nC4_; ++l) { // l is index of C4[l]
p = g.nC4_ - l - 1; // order of polynomial in eps
c[l] = mult * m.polyval(p, this._C4x, o, eps);
o += p + 1;
mult *= eps;
}
};
// return s12b, m12b, m0, M12, M21
g.Geodesic.prototype.Lengths = function(eps, sig12,
ssig1, csig1, dn1, ssig2, csig2, dn2,
cbet1, cbet2, outmask,
C1a, C2a) {
// Return m12b = (reduced length)/_b; also calculate s12b =
// distance/_b, and m0 = coefficient of secular term in
// expression for reduced length.
outmask &= g.OUT_MASK;
var vals = {},
m0x = 0, J12 = 0, A1 = 0, A2 = 0,
B1, B2, l, csig12, t;
if (outmask & (g.DISTANCE | g.REDUCEDLENGTH | g.GEODESICSCALE)) {
A1 = g.A1m1f(eps);
g.C1f(eps, C1a);
if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
A2 = g.A2m1f(eps);
g.C2f(eps, C2a);
m0x = A1 - A2;
A2 = 1 + A2;
}
A1 = 1 + A1;
}
if (outmask & g.DISTANCE) {
B1 = g.SinCosSeries(true, ssig2, csig2, C1a) -
g.SinCosSeries(true, ssig1, csig1, C1a);
// Missing a factor of _b
vals.s12b = A1 * (sig12 + B1);
if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
B2 = g.SinCosSeries(true, ssig2, csig2, C2a) -
g.SinCosSeries(true, ssig1, csig1, C2a);
J12 = m0x * sig12 + (A1 * B1 - A2 * B2);
}
} else if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
// Assume here that nC1_ >= nC2_
for (l = 1; l <= g.nC2_; ++l)
C2a[l] = A1 * C1a[l] - A2 * C2a[l];
J12 = m0x * sig12 + (g.SinCosSeries(true, ssig2, csig2, C2a) -
g.SinCosSeries(true, ssig1, csig1, C2a));
}
if (outmask & g.REDUCEDLENGTH) {
vals.m0 = m0x;
// Missing a factor of _b.
// Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure
// accurate cancellation in the case of coincident points.
vals.m12b = dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) -
csig1 * csig2 * J12;
}
if (outmask & g.GEODESICSCALE) {
csig12 = csig1 * csig2 + ssig1 * ssig2;
t = this._ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2);
vals.M12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1;
vals.M21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2;
}
return vals;
};
// return sig12, salp1, calp1, salp2, calp2, dnm
g.Geodesic.prototype.InverseStart = function(sbet1, cbet1, dn1,
sbet2, cbet2, dn2,
lam12, slam12, clam12,
C1a, C2a) {
// Return a starting point for Newton's method in salp1 and calp1
// (function value is -1). If Newton's method doesn't need to be
// used, return also salp2 and calp2 and function value is sig12.
// salp2, calp2 only updated if return val >= 0.
var vals = {},
// bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0]
sbet12 = sbet2 * cbet1 - cbet2 * sbet1,
cbet12 = cbet2 * cbet1 + sbet2 * sbet1,
sbet12a, shortline, omg12, sbetm2, somg12, comg12, t, ssig12, csig12,
x, y, lamscale, betscale, k2, eps, cbet12a, bet12a, m12b, m0, nvals,
k, omg12a, lam12x;
vals.sig12 = -1; // Return value
// Volatile declaration needed to fix inverse cases
// 88.202499451857 0 -88.202499451857 179.981022032992859592
// 89.262080389218 0 -89.262080389218 179.992207982775375662
// 89.333123580033 0 -89.333123580032997687 179.99295812360148422
// which otherwise fail with g++ 4.4.4 x86 -O3
sbet12a = sbet2 * cbet1;
sbet12a += cbet2 * sbet1;
shortline = cbet12 >= 0 && sbet12 < 0.5 && cbet2 * lam12 < 0.5;
if (shortline) {
sbetm2 = m.sq(sbet1 + sbet2);
// sin((bet1+bet2)/2)^2
// = (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2)
sbetm2 /= sbetm2 + m.sq(cbet1 + cbet2);
vals.dnm = Math.sqrt(1 + this._ep2 * sbetm2);
omg12 = lam12 / (this._f1 * vals.dnm);
somg12 = Math.sin(omg12); comg12 = Math.cos(omg12);
} else {
somg12 = slam12; comg12 = clam12;
}
vals.salp1 = cbet2 * somg12;
vals.calp1 = comg12 >= 0 ?
sbet12 + cbet2 * sbet1 * m.sq(somg12) / (1 + comg12) :
sbet12a - cbet2 * sbet1 * m.sq(somg12) / (1 - comg12);
ssig12 = m.hypot(vals.salp1, vals.calp1);
csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12;
if (shortline && ssig12 < this._etol2) {
// really short lines
vals.salp2 = cbet1 * somg12;
vals.calp2 = sbet12 - cbet1 * sbet2 *
(comg12 >= 0 ? m.sq(somg12) / (1 + comg12) : 1 - comg12);
// norm(vals.salp2, vals.calp2);
t = m.hypot(vals.salp2, vals.calp2); vals.salp2 /= t; vals.calp2 /= t;
// Set return value
vals.sig12 = Math.atan2(ssig12, csig12);
} else if (Math.abs(this._n) > 0.1 || // Skip astroid calc if too eccentric
csig12 >= 0 ||
ssig12 >= 6 * Math.abs(this._n) * Math.PI * m.sq(cbet1)) {
// Nothing to do, zeroth order spherical approximation is OK
} else {
// Scale lam12 and bet2 to x, y coordinate system where antipodal
// point is at origin and singular point is at y = 0, x = -1.
lam12x = Math.atan2(-slam12, -clam12); // lam12 - pi
if (this.f >= 0) { // In fact f == 0 does not get here
// x = dlong, y = dlat
k2 = m.sq(sbet1) * this._ep2;
eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2);
lamscale = this.f * cbet1 * this.A3f(eps) * Math.PI;
betscale = lamscale * cbet1;
x = lam12x / lamscale;
y = sbet12a / betscale;
} else { // f < 0
// x = dlat, y = dlong
cbet12a = cbet2 * cbet1 - sbet2 * sbet1;
bet12a = Math.atan2(sbet12a, cbet12a);
// In the case of lon12 = 180, this repeats a calculation made
// in Inverse.
nvals = this.Lengths(this._n, Math.PI + bet12a,
sbet1, -cbet1, dn1, sbet2, cbet2, dn2,
cbet1, cbet2, g.REDUCEDLENGTH, C1a, C2a);
m12b = nvals.m12b; m0 = nvals.m0;
x = -1 + m12b / (cbet1 * cbet2 * m0 * Math.PI);
betscale = x < -0.01 ? sbet12a / x :
-this.f * m.sq(cbet1) * Math.PI;
lamscale = betscale / cbet1;
y = lam12 / lamscale;
}
if (y > -tol1_ && x > -1 - xthresh_) {
// strip near cut
if (this.f >= 0) {
vals.salp1 = Math.min(1, -x);
vals.calp1 = -Math.sqrt(1 - m.sq(vals.salp1));
} else {
vals.calp1 = Math.max(x > -tol1_ ? 0 : -1, x);
vals.salp1 = Math.sqrt(1 - m.sq(vals.calp1));
}
} else {
// Estimate alp1, by solving the astroid problem.
//
// Could estimate alpha1 = theta + pi/2, directly, i.e.,
// calp1 = y/k; salp1 = -x/(1+k); for f >= 0
// calp1 = x/(1+k); salp1 = -y/k; for f < 0 (need to check)
//
// However, it's better to estimate omg12 from astroid and use
// spherical formula to compute alp1. This reduces the mean number of
// Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
// (min 0 max 5). The changes in the number of iterations are as
// follows:
//
// change percent
// 1 5
// 0 78
// -1 16
// -2 0.6
// -3 0.04
// -4 0.002
//
// The histogram of iterations is (m = number of iterations estimating
// alp1 directly, n = number of iterations estimating via omg12, total
// number of trials = 148605):
//
// iter m n
// 0 148 186
// 1 13046 13845
// 2 93315 102225
// 3 36189 32341
// 4 5396 7
// 5 455 1
// 6 56 0
//
// Because omg12 is near pi, estimate work with omg12a = pi - omg12
k = astroid(x, y);
omg12a = lamscale * ( this.f >= 0 ? -x * k/(1 + k) : -y * (1 + k)/k );
somg12 = Math.sin(omg12a); comg12 = -Math.cos(omg12a);
// Update spherical estimate of alp1 using omg12 instead of
// lam12
vals.salp1 = cbet2 * somg12;
vals.calp1 = sbet12a -
cbet2 * sbet1 * m.sq(somg12) / (1 - comg12);
}
}
// Sanity check on starting guess. Backwards check allows NaN through.
if (!(vals.salp1 <= 0.0)) {
// norm(vals.salp1, vals.calp1);
t = m.hypot(vals.salp1, vals.calp1); vals.salp1 /= t; vals.calp1 /= t;
} else {
vals.salp1 = 1; vals.calp1 = 0;
}
return vals;
};
// return lam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2, eps,
// domg12, dlam12,
g.Geodesic.prototype.Lambda12 = function(sbet1, cbet1, dn1,
sbet2, cbet2, dn2,
salp1, calp1, slam120, clam120,
diffp, C1a, C2a, C3a) {
var vals = {},
t, salp0, calp0,
somg1, comg1, somg2, comg2, somg12, comg12, B312, eta, k2, nvals;
if (sbet1 === 0 && calp1 === 0)
// Break degeneracy of equatorial line. This case has already been
// handled.
calp1 = -g.tiny_;
// sin(alp1) * cos(bet1) = sin(alp0)
salp0 = salp1 * cbet1;
calp0 = m.hypot(calp1, salp1 * sbet1); // calp0 > 0
// tan(bet1) = tan(sig1) * cos(alp1)
// tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1)
vals.ssig1 = sbet1; somg1 = salp0 * sbet1;
vals.csig1 = comg1 = calp1 * cbet1;
// norm(vals.ssig1, vals.csig1);
t = m.hypot(vals.ssig1, vals.csig1); vals.ssig1 /= t; vals.csig1 /= t;
// norm(somg1, comg1); -- don't need to normalize!
// Enforce symmetries in the case abs(bet2) = -bet1. Need to be careful
// about this case, since this can yield singularities in the Newton
// iteration.
// sin(alp2) * cos(bet2) = sin(alp0)
vals.salp2 = cbet2 !== cbet1 ? salp0 / cbet2 : salp1;
// calp2 = sqrt(1 - sq(salp2))
// = sqrt(sq(calp0) - sq(sbet2)) / cbet2
// and subst for calp0 and rearrange to give (choose positive sqrt
// to give alp2 in [0, pi/2]).
vals.calp2 = cbet2 !== cbet1 || Math.abs(sbet2) !== -sbet1 ?
Math.sqrt(m.sq(calp1 * cbet1) + (cbet1 < -sbet1 ?
(cbet2 - cbet1) * (cbet1 + cbet2) :
(sbet1 - sbet2) * (sbet1 + sbet2))) /
cbet2 : Math.abs(calp1);
// tan(bet2) = tan(sig2) * cos(alp2)
// tan(omg2) = sin(alp0) * tan(sig2).
vals.ssig2 = sbet2; somg2 = salp0 * sbet2;
vals.csig2 = comg2 = vals.calp2 * cbet2;
// norm(vals.ssig2, vals.csig2);
t = m.hypot(vals.ssig2, vals.csig2); vals.ssig2 /= t; vals.csig2 /= t;
// norm(somg2, comg2); -- don't need to normalize!
// sig12 = sig2 - sig1, limit to [0, pi]
vals.sig12 = Math.atan2(Math.max(0, vals.csig1 * vals.ssig2 -
vals.ssig1 * vals.csig2),
vals.csig1 * vals.csig2 +
vals.ssig1 * vals.ssig2);
// omg12 = omg2 - omg1, limit to [0, pi]
somg12 = Math.max(0, comg1 * somg2 - somg1 * comg2);
comg12 = comg1 * comg2 + somg1 * somg2;
// eta = omg12 - lam120
eta = Math.atan2(somg12 * clam120 - comg12 * slam120,
comg12 * clam120 + somg12 * slam120);
k2 = m.sq(calp0) * this._ep2;
vals.eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2);
this.C3f(vals.eps, C3a);
B312 = (g.SinCosSeries(true, vals.ssig2, vals.csig2, C3a) -
g.SinCosSeries(true, vals.ssig1, vals.csig1, C3a));
vals.domg12 = -this.f * this.A3f(vals.eps) * salp0 * (vals.sig12 + B312);
vals.lam12 = eta + vals.domg12;
if (diffp) {
if (vals.calp2 === 0)
vals.dlam12 = -2 * this._f1 * dn1 / sbet1;
else {
nvals = this.Lengths(vals.eps, vals.sig12,
vals.ssig1, vals.csig1, dn1,
vals.ssig2, vals.csig2, dn2,
cbet1, cbet2, g.REDUCEDLENGTH, C1a, C2a);
vals.dlam12 = nvals.m12b;
vals.dlam12 *= this._f1 / (vals.calp2 * cbet2);
}
}
return vals;
};
/**
* @summary Solve the inverse geodesic problem.
* @param {number} lat1 the latitude of the first point in degrees.
* @param {number} lon1 the longitude of the first point in degrees.
* @param {number} lat2 the latitude of the second point in degrees.
* @param {number} lon2 the longitude of the second point in degrees.
* @param {bitmask} [outmask = STANDARD] which results to include.
* @returns {object} the requested results
* @description The lat1, lon1, lat2, lon2, and a12 fields of the result are
* always set. For details on the outmask parameter, see {@tutorial
* 2-interface}, "The outmask and caps parameters".
*/
g.Geodesic.prototype.Inverse = function(lat1, lon1, lat2, lon2, outmask) {
var r, vals;
if (!outmask) outmask = g.STANDARD;
if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
outmask &= g.OUT_MASK;
r = this.InverseInt(lat1, lon1, lat2, lon2, outmask);
vals = r.vals;
if (outmask & g.AZIMUTH) {
vals.azi1 = m.atan2d(r.salp1, r.calp1);
vals.azi2 = m.atan2d(r.salp2, r.calp2);
}
return vals;
};
g.Geodesic.prototype.InverseInt = function(lat1, lon1, lat2, lon2, outmask) {
var vals = {},
lon12, lon12s, lonsign, t, swapp, latsign,
sbet1, cbet1, sbet2, cbet2, s12x, m12x,
dn1, dn2, lam12, slam12, clam12,
sig12, calp1, salp1, calp2, salp2, C1a, C2a, C3a, meridian, nvals,
ssig1, csig1, ssig2, csig2, eps, omg12, dnm,
numit, salp1a, calp1a, salp1b, calp1b,
tripn, tripb, v, dv, dalp1, sdalp1, cdalp1, nsalp1,
lengthmask, salp0, calp0, alp12, k2, A4, C4a, B41, B42,
somg12, comg12, domg12, dbet1, dbet2, salp12, calp12, sdomg12, cdomg12;
// Compute longitude difference (AngDiff does this carefully). Result is
// in [-180, 180] but -180 is only for west-going geodesics. 180 is for
// east-going and meridional geodesics.
vals.lat1 = lat1 = m.LatFix(lat1); vals.lat2 = lat2 = m.LatFix(lat2);
// If really close to the equator, treat as on equator.
lat1 = m.AngRound(lat1);
lat2 = m.AngRound(lat2);
lon12 = m.AngDiff(lon1, lon2); lon12s = lon12.t; lon12 = lon12.s;
if (outmask & g.LONG_UNROLL) {
vals.lon1 = lon1; vals.lon2 = (lon1 + lon12) + lon12s;
} else {
vals.lon1 = m.AngNormalize(lon1); vals.lon2 = m.AngNormalize(lon2);
}
// Make longitude difference positive.
lonsign = lon12 >= 0 ? 1 : -1;
// If very close to being on the same half-meridian, then make it so.
lon12 = lonsign * m.AngRound(lon12);
lon12s = m.AngRound((180 - lon12) - lonsign * lon12s);
lam12 = lon12 * m.degree;
t = m.sincosd(lon12 > 90 ? lon12s : lon12);
slam12 = t.s; clam12 = (lon12 > 90 ? -1 : 1) * t.c;
// Swap points so that point with higher (abs) latitude is point 1
// If one latitude is a nan, then it becomes lat1.
swapp = Math.abs(lat1) < Math.abs(lat2) ? -1 : 1;
if (swapp < 0) {
lonsign *= -1;
t = lat1;
lat1 = lat2;
lat2 = t;
// swap(lat1, lat2);
}
// Make lat1 <= 0
latsign = lat1 < 0 ? 1 : -1;
lat1 *= latsign;
lat2 *= latsign;
// Now we have
//
// 0 <= lon12 <= 180
// -90 <= lat1 <= 0
// lat1 <= lat2 <= -lat1
//
// longsign, swapp, latsign register the transformation to bring the
// coordinates to this canonical form. In all cases, 1 means no change was
// made. We make these transformations so that there are few cases to
// check, e.g., on verifying quadrants in atan2. In addition, this
// enforces some symmetries in the results returned.
t = m.sincosd(lat1); sbet1 = this._f1 * t.s; cbet1 = t.c;
// norm(sbet1, cbet1);
t = m.hypot(sbet1, cbet1); sbet1 /= t; cbet1 /= t;
// Ensure cbet1 = +epsilon at poles
cbet1 = Math.max(g.tiny_, cbet1);
t = m.sincosd(lat2); sbet2 = this._f1 * t.s; cbet2 = t.c;
// norm(sbet2, cbet2);
t = m.hypot(sbet2, cbet2); sbet2 /= t; cbet2 /= t;
// Ensure cbet2 = +epsilon at poles
cbet2 = Math.max(g.tiny_, cbet2);
// If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
// |bet1| - |bet2|. Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
// a better measure. This logic is used in assigning calp2 in Lambda12.
// Sometimes these quantities vanish and in that case we force bet2 = +/-
// bet1 exactly. An example where is is necessary is the inverse problem
// 48.522876735459 0 -48.52287673545898293 179.599720456223079643
// which failed with Visual Studio 10 (Release and Debug)
if (cbet1 < -sbet1) {
if (cbet2 === cbet1)
sbet2 = sbet2 < 0 ? sbet1 : -sbet1;
} else {
if (Math.abs(sbet2) === -sbet1)
cbet2 = cbet1;
}
dn1 = Math.sqrt(1 + this._ep2 * m.sq(sbet1));
dn2 = Math.sqrt(1 + this._ep2 * m.sq(sbet2));
// index zero elements of these arrays are unused
C1a = new Array(g.nC1_ + 1);
C2a = new Array(g.nC2_ + 1);
C3a = new Array(g.nC3_);
meridian = lat1 === -90 || slam12 === 0;
if (meridian) {
// Endpoints are on a single full meridian, so the geodesic might
// lie on a meridian.
calp1 = clam12; salp1 = slam12; // Head to the target longitude
calp2 = 1; salp2 = 0; // At the target we're heading north
// tan(bet) = tan(sig) * cos(alp)
ssig1 = sbet1; csig1 = calp1 * cbet1;
ssig2 = sbet2; csig2 = calp2 * cbet2;
// sig12 = sig2 - sig1
sig12 = Math.atan2(Math.max(0, csig1 * ssig2 - ssig1 * csig2),
csig1 * csig2 + ssig1 * ssig2);
nvals = this.Lengths(this._n, sig12,
ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2,
outmask | g.DISTANCE | g.REDUCEDLENGTH,
C1a, C2a);
s12x = nvals.s12b;
m12x = nvals.m12b;
// Ignore m0
if (outmask & g.GEODESICSCALE) {
vals.M12 = nvals.M12;
vals.M21 = nvals.M21;
}
// Add the check for sig12 since zero length geodesics might yield
// m12 < 0. Test case was
//
// echo 20.001 0 20.001 0 | GeodSolve -i
//
// In fact, we will have sig12 > pi/2 for meridional geodesic
// which is not a shortest path.
if (sig12 < 1 || m12x >= 0) {
// Need at least 2, to handle 90 0 90 180
if (sig12 < 3 * g.tiny_)
sig12 = m12x = s12x = 0;
m12x *= this._b;
s12x *= this._b;
vals.a12 = sig12 / m.degree;
} else
// m12 < 0, i.e., prolate and too close to anti-podal
meridian = false;
}
somg12 = 2;
if (!meridian &&
sbet1 === 0 && // and sbet2 == 0
(this.f <= 0 || lon12s >= this.f * 180)) {
// Geodesic runs along equator
calp1 = calp2 = 0; salp1 = salp2 = 1;
s12x = this.a * lam12;
sig12 = omg12 = lam12 / this._f1;
m12x = this._b * Math.sin(sig12);
if (outmask & g.GEODESICSCALE)
vals.M12 = vals.M21 = Math.cos(sig12);
vals.a12 = lon12 / this._f1;
} else if (!meridian) {
// Now point1 and point2 belong within a hemisphere bounded by a
// meridian and geodesic is neither meridional or equatorial.
// Figure a starting point for Newton's method
nvals = this.InverseStart(sbet1, cbet1, dn1, sbet2, cbet2, dn2,
lam12, slam12, clam12, C1a, C2a);
sig12 = nvals.sig12;
salp1 = nvals.salp1;
calp1 = nvals.calp1;
if (sig12 >= 0) {
salp2 = nvals.salp2;
calp2 = nvals.calp2;
// Short lines (InverseStart sets salp2, calp2, dnm)
dnm = nvals.dnm;
s12x = sig12 * this._b * dnm;
m12x = m.sq(dnm) * this._b * Math.sin(sig12 / dnm);
if (outmask & g.GEODESICSCALE)
vals.M12 = vals.M21 = Math.cos(sig12 / dnm);
vals.a12 = sig12 / m.degree;
omg12 = lam12 / (this._f1 * dnm);
} else {
// Newton's method. This is a straightforward solution of f(alp1) =
// lambda12(alp1) - lam12 = 0 with one wrinkle. f(alp) has exactly one
// root in the interval (0, pi) and its derivative is positive at the
// root. Thus f(alp) is positive for alp > alp1 and negative for alp <
// alp1. During the course of the iteration, a range (alp1a, alp1b) is
// maintained which brackets the root and with each evaluation of
// f(alp) the range is shrunk if possible. Newton's method is
// restarted whenever the derivative of f is negative (because the new
// value of alp1 is then further from the solution) or if the new
// estimate of alp1 lies outside (0,pi); in this case, the new starting
// guess is taken to be (alp1a + alp1b) / 2.
numit = 0;
// Bracketing range
salp1a = g.tiny_; calp1a = 1; salp1b = g.tiny_; calp1b = -1;
for (tripn = false, tripb = false; numit < maxit2_; ++numit) {
// the WGS84 test set: mean = 1.47, sd = 1.25, max = 16
// WGS84 and random input: mean = 2.85, sd = 0.60
nvals = this.Lambda12(sbet1, cbet1, dn1, sbet2, cbet2, dn2,
salp1, calp1, slam12, clam12, numit < maxit1_,
C1a, C2a, C3a);
v = nvals.lam12;
salp2 = nvals.salp2;
calp2 = nvals.calp2;
sig12 = nvals.sig12;
ssig1 = nvals.ssig1;
csig1 = nvals.csig1;
ssig2 = nvals.ssig2;
csig2 = nvals.csig2;
eps = nvals.eps;
domg12 = nvals.domg12;
dv = nvals.dlam12;
// 2 * tol0 is approximately 1 ulp for a number in [0, pi].
// Reversed test to allow escape with NaNs
if (tripb || !(Math.abs(v) >= (tripn ? 8 : 1) * tol0_))
break;
// Update bracketing values
if (v > 0 && (numit < maxit1_ || calp1/salp1 > calp1b/salp1b)) {
salp1b = salp1; calp1b = calp1;
} else if (v < 0 &&
(numit < maxit1_ || calp1/salp1 < calp1a/salp1a)) {
salp1a = salp1; calp1a = calp1;
}
if (numit < maxit1_ && dv > 0) {
dalp1 = -v/dv;
sdalp1 = Math.sin(dalp1); cdalp1 = Math.cos(dalp1);
nsalp1 = salp1 * cdalp1 + calp1 * sdalp1;
if (nsalp1 > 0 && Math.abs(dalp1) < Math.PI) {
calp1 = calp1 * cdalp1 - salp1 * sdalp1;
salp1 = nsalp1;
// norm(salp1, calp1);
t = m.hypot(salp1, calp1); salp1 /= t; calp1 /= t;
// In some regimes we don't get quadratic convergence because
// slope -> 0. So use convergence conditions based on epsilon
// instead of sqrt(epsilon).
tripn = Math.abs(v) <= 16 * tol0_;
continue;
}
}
// Either dv was not positive or updated value was outside legal
// range. Use the midpoint of the bracket as the next estimate.
// This mechanism is not needed for the WGS84 ellipsoid, but it does
// catch problems with more eccentric ellipsoids. Its efficacy is
// such for the WGS84 test set with the starting guess set to alp1 =
// 90deg:
// the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
// WGS84 and random input: mean = 4.74, sd = 0.99
salp1 = (salp1a + salp1b)/2;
calp1 = (calp1a + calp1b)/2;
// norm(salp1, calp1);
t = m.hypot(salp1, calp1); salp1 /= t; calp1 /= t;
tripn = false;
tripb = (Math.abs(salp1a - salp1) + (calp1a - calp1) < tolb_ ||
Math.abs(salp1 - salp1b) + (calp1 - calp1b) < tolb_);
}
lengthmask = outmask |
(outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE) ?
g.DISTANCE : g.NONE);
nvals = this.Lengths(eps, sig12,
ssig1, csig1, dn1, ssig2, csig2, dn2,
cbet1, cbet2,
lengthmask, C1a, C2a);
s12x = nvals.s12b;
m12x = nvals.m12b;
// Ignore m0
if (outmask & g.GEODESICSCALE) {
vals.M12 = nvals.M12;
vals.M21 = nvals.M21;
}
m12x *= this._b;
s12x *= this._b;
vals.a12 = sig12 / m.degree;
if (outmask & g.AREA) {
// omg12 = lam12 - domg12
sdomg12 = Math.sin(domg12); cdomg12 = Math.cos(domg12);
somg12 = slam12 * cdomg12 - clam12 * sdomg12;
comg12 = clam12 * cdomg12 + slam12 * sdomg12;
}
}
}
if (outmask & g.DISTANCE)
vals.s12 = 0 + s12x; // Convert -0 to 0
if (outmask & g.REDUCEDLENGTH)
vals.m12 = 0 + m12x; // Convert -0 to 0
if (outmask & g.AREA) {
// From Lambda12: sin(alp1) * cos(bet1) = sin(alp0)
salp0 = salp1 * cbet1;
calp0 = m.hypot(calp1, salp1 * sbet1); // calp0 > 0
if (calp0 !== 0 && salp0 !== 0) {
// From Lambda12: tan(bet) = tan(sig) * cos(alp)
ssig1 = sbet1; csig1 = calp1 * cbet1;
ssig2 = sbet2; csig2 = calp2 * cbet2;
k2 = m.sq(calp0) * this._ep2;
eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2);
// Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0).
A4 = m.sq(this.a) * calp0 * salp0 * this._e2;
// norm(ssig1, csig1);
t = m.hypot(ssig1, csig1); ssig1 /= t; csig1 /= t;
// norm(ssig2, csig2);
t = m.hypot(ssig2, csig2); ssig2 /= t; csig2 /= t;
C4a = new Array(g.nC4_);
this.C4f(eps, C4a);
B41 = g.SinCosSeries(false, ssig1, csig1, C4a);
B42 = g.SinCosSeries(false, ssig2, csig2, C4a);
vals.S12 = A4 * (B42 - B41);
} else
// Avoid problems with indeterminate sig1, sig2 on equator
vals.S12 = 0;
if (!meridian && somg12 > 1) {
somg12 = Math.sin(omg12); comg12 = Math.cos(omg12);
}
if (!meridian &&
comg12 > -0.7071 && // Long difference not too big
sbet2 - sbet1 < 1.75) { // Lat difference not too big
// Use tan(Gamma/2) = tan(omg12/2)
// * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
// with tan(x/2) = sin(x)/(1+cos(x))
domg12 = 1 + comg12; dbet1 = 1 + cbet1; dbet2 = 1 + cbet2;
alp12 = 2 * Math.atan2( somg12 * (sbet1*dbet2 + sbet2*dbet1),
domg12 * (sbet1*sbet2 + dbet1*dbet2) );
} else {
// alp12 = alp2 - alp1, used in atan2 so no need to normalize
salp12 = salp2 * calp1 - calp2 * salp1;
calp12 = calp2 * calp1 + salp2 * salp1;
// The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
// salp12 = -0 and alp12 = -180. However this depends on the sign
// being attached to 0 correctly. The following ensures the correct
// behavior.
if (salp12 === 0 && calp12 < 0) {
salp12 = g.tiny_ * calp1;
calp12 = -1;
}
alp12 = Math.atan2(salp12, calp12);
}
vals.S12 += this._c2 * alp12;
vals.S12 *= swapp * lonsign * latsign;
// Convert -0 to 0
vals.S12 += 0;
}
// Convert calp, salp to azimuth accounting for lonsign, swapp, latsign.
if (swapp < 0) {
t = salp1;
salp1 = salp2;
salp2 = t;
// swap(salp1, salp2);
t = calp1;
calp1 = calp2;
calp2 = t;
// swap(calp1, calp2);
if (outmask & g.GEODESICSCALE) {
t = vals.M12;
vals.M12 = vals.M21;
vals.M21 = t;
// swap(vals.M12, vals.M21);
}
}
salp1 *= swapp * lonsign; calp1 *= swapp * latsign;
salp2 *= swapp * lonsign; calp2 *= swapp * latsign;
return {vals: vals,
salp1: salp1, calp1: calp1,
salp2: salp2, calp2: calp2};
};
/**
* @summary Solve the general direct geodesic problem.
* @param {number} lat1 the latitude of the first point in degrees.
* @param {number} lon1 the longitude of the first point in degrees.
* @param {number} azi1 the azimuth at the first point in degrees.
* @param {bool} arcmode is the next parameter an arc length?
* @param {number} s12_a12 the (arcmode ? arc length : distance) from the
* first point to the second in (arcmode ? degrees : meters).
* @param {bitmask} [outmask = STANDARD] which results to include.
* @returns {object} the requested results.
* @description The lat1, lon1, azi1, and a12 fields of the result are always
* set; s12 is included if arcmode is false. For details on the outmask
* parameter, see {@tutorial 2-interface}, "The outmask and caps
* parameters".
*/
g.Geodesic.prototype.GenDirect = function(lat1, lon1, azi1,
arcmode, s12_a12, outmask) {
var line;
if (!outmask) outmask = g.STANDARD;
else if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
// Automatically supply DISTANCE_IN if necessary
if (!arcmode) outmask |= g.DISTANCE_IN;
line = new l.GeodesicLine(this, lat1, lon1, azi1, outmask);
return line.GenPosition(arcmode, s12_a12, outmask);
};
/**
* @summary Solve the direct geodesic problem.
* @param {number} lat1 the latitude of the first point in degrees.
* @param {number} lon1 the longitude of the first point in degrees.
* @param {number} azi1 the azimuth at the first point in degrees.
* @param {number} s12 the distance from the first point to the second in
* meters.
* @param {bitmask} [outmask = STANDARD] which results to include.
* @returns {object} the requested results.
* @description The lat1, lon1, azi1, s12, and a12 fields of the result are
* always set. For details on the outmask parameter, see {@tutorial
* 2-interface}, "The outmask and caps parameters".
*/
g.Geodesic.prototype.Direct = function(lat1, lon1, azi1, s12, outmask) {
return this.GenDirect(lat1, lon1, azi1, false, s12, outmask);
};
/**
* @summary Solve the direct geodesic problem with arc length.
* @param {number} lat1 the latitude of the first point in degrees.
* @param {number} lon1 the longitude of the first point in degrees.
* @param {number} azi1 the azimuth at the first point in degrees.
* @param {number} a12 the arc length from the first point to the second in
* degrees.
* @param {bitmask} [outmask = STANDARD] which results to include.
* @returns {object} the requested results.
* @description The lat1, lon1, azi1, and a12 fields of the result are
* always set. For details on the outmask parameter, see {@tutorial
* 2-interface}, "The outmask and caps parameters".
*/
g.Geodesic.prototype.ArcDirect = function(lat1, lon1, azi1, a12, outmask) {
return this.GenDirect(lat1, lon1, azi1, true, a12, outmask);
};
/**
* @summary Create a {@link module:GeographicLib/GeodesicLine.GeodesicLine
* GeodesicLine} object.
* @param {number} lat1 the latitude of the first point in degrees.
* @param {number} lon1 the longitude of the first point in degrees.
* @param {number} azi1 the azimuth at the first point in degrees.
* degrees.
* @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
* include.
* @returns {object} the
* {@link module:GeographicLib/GeodesicLine.GeodesicLine
* GeodesicLine} object
* @description For details on the caps parameter, see {@tutorial
* 2-interface}, "The outmask and caps parameters".
*/
g.Geodesic.prototype.Line = function(lat1, lon1, azi1, caps) {
return new l.GeodesicLine(this, lat1, lon1, azi1, caps);
};
/**
* @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
* GeodesicLine} in terms of the direct geodesic problem specified in terms
* of distance.
* @param {number} lat1 the latitude of the first point in degrees.
* @param {number} lon1 the longitude of the first point in degrees.
* @param {number} azi1 the azimuth at the first point in degrees.
* degrees.
* @param {number} s12 the distance between point 1 and point 2 (meters); it
* can be negative.
* @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
* include.
* @returns {object} the
* {@link module:GeographicLib/GeodesicLine.GeodesicLine
* GeodesicLine} object
* @description This function sets point 3 of the GeodesicLine to correspond
* to point 2 of the direct geodesic problem. For details on the caps
* parameter, see {@tutorial 2-interface}, "The outmask and caps
* parameters".
*/
g.Geodesic.prototype.DirectLine = function(lat1, lon1, azi1, s12, caps) {
return this.GenDirectLine(lat1, lon1, azi1, false, s12, caps);
};
/**
* @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
* GeodesicLine} in terms of the direct geodesic problem specified in terms
* of arc length.
* @param {number} lat1 the latitude of the first point in degrees.
* @param {number} lon1 the longitude of the first point in degrees.
* @param {number} azi1 the azimuth at the first point in degrees.
* degrees.
* @param {number} a12 the arc length between point 1 and point 2 (degrees);
* it can be negative.
* @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
* include.
* @returns {object} the
* {@link module:GeographicLib/GeodesicLine.GeodesicLine
* GeodesicLine} object
* @description This function sets point 3 of the GeodesicLine to correspond
* to point 2 of the direct geodesic problem. For details on the caps
* parameter, see {@tutorial 2-interface}, "The outmask and caps
* parameters".
*/
g.Geodesic.prototype.ArcDirectLine = function(lat1, lon1, azi1, a12, caps) {
return this.GenDirectLine(lat1, lon1, azi1, true, a12, caps);
};
/**
* @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
* GeodesicLine} in terms of the direct geodesic problem specified in terms
* of either distance or arc length.
* @param {number} lat1 the latitude of the first point in degrees.
* @param {number} lon1 the longitude of the first point in degrees.
* @param {number} azi1 the azimuth at the first point in degrees.
* degrees.
* @param {bool} arcmode boolean flag determining the meaning of the
* s12_a12.
* @param {number} s12_a12 if arcmode is false, this is the distance between
* point 1 and point 2 (meters); otherwise it is the arc length between
* point 1 and point 2 (degrees); it can be negative.
* @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
* include.
* @returns {object} the
* {@link module:GeographicLib/GeodesicLine.GeodesicLine
* GeodesicLine} object
* @description This function sets point 3 of the GeodesicLine to correspond
* to point 2 of the direct geodesic problem. For details on the caps
* parameter, see {@tutorial 2-interface}, "The outmask and caps
* parameters".
*/
g.Geodesic.prototype.GenDirectLine = function(lat1, lon1, azi1,
arcmode, s12_a12, caps) {
var t;
if (!caps) caps = g.STANDARD | g.DISTANCE_IN;
// Automatically supply DISTANCE_IN if necessary
if (!arcmode) caps |= g.DISTANCE_IN;
t = new l.GeodesicLine(this, lat1, lon1, azi1, caps);
t.GenSetDistance(arcmode, s12_a12);
return t;
};
/**
* @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
* GeodesicLine} in terms of the inverse geodesic problem.
* @param {number} lat1 the latitude of the first point in degrees.
* @param {number} lon1 the longitude of the first point in degrees.
* @param {number} lat2 the latitude of the second point in degrees.
* @param {number} lon2 the longitude of the second point in degrees.
* @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
* include.
* @returns {object} the
* {@link module:GeographicLib/GeodesicLine.GeodesicLine
* GeodesicLine} object
* @description This function sets point 3 of the GeodesicLine to correspond
* to point 2 of the inverse geodesic problem. For details on the caps
* parameter, see {@tutorial 2-interface}, "The outmask and caps
* parameters".
*/
g.Geodesic.prototype.InverseLine = function(lat1, lon1, lat2, lon2, caps) {
var r, t, azi1;
if (!caps) caps = g.STANDARD | g.DISTANCE_IN;
r = this.InverseInt(lat1, lon1, lat2, lon2, g.ARC);
azi1 = m.atan2d(r.salp1, r.calp1);
// Ensure that a12 can be converted to a distance
if (caps & (g.OUT_MASK & g.DISTANCE_IN)) caps |= g.DISTANCE;
t = new l.GeodesicLine(this, lat1, lon1, azi1, caps, r.salp1, r.calp1);
t.SetArc(r.vals.a12);
return t;
};
/**
* @summary Create a {@link module:GeographicLib/PolygonArea.PolygonArea
* PolygonArea} object.
* @param {bool} [polyline = false] if true the new PolygonArea object
* describes a polyline instead of a polygon.
* @returns {object} the
* {@link module:GeographicLib/PolygonArea.PolygonArea
* PolygonArea} object
*/
g.Geodesic.prototype.Polygon = function(polyline) {
return new p.PolygonArea(this, polyline);
};
/**
* @summary a {@link module:GeographicLib/Geodesic.Geodesic Geodesic} object
* initialized for the WGS84 ellipsoid.
* @constant {object}
*/
g.WGS84 = new g.Geodesic(c.WGS84.a, c.WGS84.f);
})(GeographicLib.Geodesic, GeographicLib.GeodesicLine,
GeographicLib.PolygonArea, GeographicLib.Math, GeographicLib.Constants);
/**************** GeodesicLine.js ****************/
/*
* GeodesicLine.js
* Transcription of GeodesicLine.[ch]pp into JavaScript.
*
* See the documentation for the C++ class. The conversion is a literal
* conversion from C++.
*
* The algorithms are derived in
*
* Charles F. F. Karney,
* Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
* https://doi.org/10.1007/s00190-012-0578-z
* Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
*
* Copyright (c) Charles Karney (2011-2016) and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
*/
// Load AFTER GeographicLib/Math.js, GeographicLib/Geodesic.js
(function(
g,
/**
* @exports GeographicLib/GeodesicLine
* @description Solve geodesic problems on a single geodesic line via the
* {@link module:GeographicLib/GeodesicLine.GeodesicLine GeodesicLine}
* class.
*/
l, m) {
/**
* @class
* @property {number} a the equatorial radius (meters).
* @property {number} f the flattening.
* @property {number} lat1 the initial latitude (degrees).
* @property {number} lon1 the initial longitude (degrees).
* @property {number} azi1 the initial azimuth (degrees).
* @property {number} salp1 the sine of the azimuth at the first point.
* @property {number} calp1 the cosine the azimuth at the first point.
* @property {number} s13 the distance to point 3 (meters).
* @property {number} a13 the arc length to point 3 (degrees).
* @property {bitmask} caps the capabilities of the object.
* @summary Initialize a GeodesicLine object. For details on the caps
* parameter, see {@tutorial 2-interface}, "The outmask and caps
* parameters".
* @classdesc Performs geodesic calculations along a given geodesic line.
* This object is usually instantiated by
* {@link module:GeographicLib/Geodesic.Geodesic#Line Geodesic.Line}.
* The methods
* {@link module:GeographicLib/Geodesic.Geodesic#DirectLine
* Geodesic.DirectLine} and
* {@link module:GeographicLib/Geodesic.Geodesic#InverseLine
* Geodesic.InverseLine} set in addition the position of a reference point
* 3.
* @param {object} geod a {@link module:GeographicLib/Geodesic.Geodesic
* Geodesic} object.
* @param {number} lat1 the latitude of the first point in degrees.
* @param {number} lon1 the longitude of the first point in degrees.
* @param {number} azi1 the azimuth at the first point in degrees.
* @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
* include; LATITUDE | AZIMUTH are always included.
*/
l.GeodesicLine = function(geod, lat1, lon1, azi1, caps, salp1, calp1) {
var t, cbet1, sbet1, eps, s, c;
if (!caps) caps = g.STANDARD | g.DISTANCE_IN;
this.a = geod.a;
this.f = geod.f;
this._b = geod._b;
this._c2 = geod._c2;
this._f1 = geod._f1;
this.caps = caps | g.LATITUDE | g.AZIMUTH | g.LONG_UNROLL;
this.lat1 = m.LatFix(lat1);
this.lon1 = lon1;
if (typeof salp1 === 'undefined' || typeof calp1 === 'undefined') {
this.azi1 = m.AngNormalize(azi1);
t = m.sincosd(m.AngRound(this.azi1)); this.salp1 = t.s; this.calp1 = t.c;
} else {
this.azi1 = azi1; this.salp1 = salp1; this.calp1 = calp1;
}
t = m.sincosd(m.AngRound(this.lat1)); sbet1 = this._f1 * t.s; cbet1 = t.c;
// norm(sbet1, cbet1);
t = m.hypot(sbet1, cbet1); sbet1 /= t; cbet1 /= t;
// Ensure cbet1 = +epsilon at poles
cbet1 = Math.max(g.tiny_, cbet1);
this._dn1 = Math.sqrt(1 + geod._ep2 * m.sq(sbet1));
// Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0),
this._salp0 = this.salp1 * cbet1; // alp0 in [0, pi/2 - |bet1|]
// Alt: calp0 = hypot(sbet1, calp1 * cbet1). The following
// is slightly better (consider the case salp1 = 0).
this._calp0 = m.hypot(this.calp1, this.salp1 * sbet1);
// Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
// sig = 0 is nearest northward crossing of equator.
// With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
// With bet1 = pi/2, alp1 = -pi, sig1 = pi/2
// With bet1 = -pi/2, alp1 = 0 , sig1 = -pi/2
// Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
// With alp0 in (0, pi/2], quadrants for sig and omg coincide.
// No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
// With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi.
this._ssig1 = sbet1; this._somg1 = this._salp0 * sbet1;
this._csig1 = this._comg1 =
sbet1 !== 0 || this.calp1 !== 0 ? cbet1 * this.calp1 : 1;
// norm(this._ssig1, this._csig1); // sig1 in (-pi, pi]
t = m.hypot(this._ssig1, this._csig1);
this._ssig1 /= t; this._csig1 /= t;
// norm(this._somg1, this._comg1); -- don't need to normalize!
this._k2 = m.sq(this._calp0) * geod._ep2;
eps = this._k2 / (2 * (1 + Math.sqrt(1 + this._k2)) + this._k2);
if (this.caps & g.CAP_C1) {
this._A1m1 = g.A1m1f(eps);
this._C1a = new Array(g.nC1_ + 1);
g.C1f(eps, this._C1a);
this._B11 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C1a);
s = Math.sin(this._B11); c = Math.cos(this._B11);
// tau1 = sig1 + B11
this._stau1 = this._ssig1 * c + this._csig1 * s;
this._ctau1 = this._csig1 * c - this._ssig1 * s;
// Not necessary because C1pa reverts C1a
// _B11 = -SinCosSeries(true, _stau1, _ctau1, _C1pa);
}
if (this.caps & g.CAP_C1p) {
this._C1pa = new Array(g.nC1p_ + 1);
g.C1pf(eps, this._C1pa);
}
if (this.caps & g.CAP_C2) {
this._A2m1 = g.A2m1f(eps);
this._C2a = new Array(g.nC2_ + 1);
g.C2f(eps, this._C2a);
this._B21 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C2a);
}
if (this.caps & g.CAP_C3) {
this._C3a = new Array(g.nC3_);
geod.C3f(eps, this._C3a);
this._A3c = -this.f * this._salp0 * geod.A3f(eps);
this._B31 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C3a);
}
if (this.caps & g.CAP_C4) {
this._C4a = new Array(g.nC4_); // all the elements of _C4a are used
geod.C4f(eps, this._C4a);
// Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0)
this._A4 = m.sq(this.a) * this._calp0 * this._salp0 * geod._e2;
this._B41 = g.SinCosSeries(false, this._ssig1, this._csig1, this._C4a);
}
this.a13 = this.s13 = Number.NaN;
};
/**
* @summary Find the position on the line (general case).
* @param {bool} arcmode is the next parameter an arc length?
* @param {number} s12_a12 the (arcmode ? arc length : distance) from the
* first point to the second in (arcmode ? degrees : meters).
* @param {bitmask} [outmask = STANDARD] which results to include; this is
* subject to the capabilities of the object.
* @returns {object} the requested results.
* @description The lat1, lon1, azi1, and a12 fields of the result are
* always set; s12 is included if arcmode is false. For details on the
* outmask parameter, see {@tutorial 2-interface}, "The outmask and caps
* parameters".
*/
l.GeodesicLine.prototype.GenPosition = function(arcmode, s12_a12,
outmask) {
var vals = {},
sig12, ssig12, csig12, B12, AB1, ssig2, csig2, tau12, s, c, serr,
omg12, lam12, lon12, E, sbet2, cbet2, somg2, comg2, salp2, calp2, dn2,
B22, AB2, J12, t, B42, salp12, calp12;
if (!outmask) outmask = g.STANDARD;
else if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
outmask &= this.caps & g.OUT_MASK;
vals.lat1 = this.lat1; vals.azi1 = this.azi1;
vals.lon1 = outmask & g.LONG_UNROLL ?
this.lon1 : m.AngNormalize(this.lon1);
if (arcmode)
vals.a12 = s12_a12;
else
vals.s12 = s12_a12;
if (!( arcmode || (this.caps & g.DISTANCE_IN & g.OUT_MASK) )) {
// Uninitialized or impossible distance calculation requested
vals.a12 = Number.NaN;
return vals;
}
// Avoid warning about uninitialized B12.
B12 = 0; AB1 = 0;
if (arcmode) {
// Interpret s12_a12 as spherical arc length
sig12 = s12_a12 * m.degree;
t = m.sincosd(s12_a12); ssig12 = t.s; csig12 = t.c;
} else {
// Interpret s12_a12 as distance
tau12 = s12_a12 / (this._b * (1 + this._A1m1));
s = Math.sin(tau12);
c = Math.cos(tau12);
// tau2 = tau1 + tau12
B12 = -g.SinCosSeries(true,
this._stau1 * c + this._ctau1 * s,
this._ctau1 * c - this._stau1 * s,
this._C1pa);
sig12 = tau12 - (B12 - this._B11);
ssig12 = Math.sin(sig12); csig12 = Math.cos(sig12);
if (Math.abs(this.f) > 0.01) {
// Reverted distance series is inaccurate for |f| > 1/100, so correct
// sig12 with 1 Newton iteration. The following table shows the
// approximate maximum error for a = WGS_a() and various f relative to
// GeodesicExact.
// erri = the error in the inverse solution (nm)
// errd = the error in the direct solution (series only) (nm)
// errda = the error in the direct solution
// (series + 1 Newton) (nm)
//
// f erri errd errda
// -1/5 12e6 1.2e9 69e6
// -1/10 123e3 12e6 765e3
// -1/20 1110 108e3 7155
// -1/50 18.63 200.9 27.12
// -1/100 18.63 23.78 23.37
// -1/150 18.63 21.05 20.26
// 1/150 22.35 24.73 25.83
// 1/100 22.35 25.03 25.31
// 1/50 29.80 231.9 30.44
// 1/20 5376 146e3 10e3
// 1/10 829e3 22e6 1.5e6
// 1/5 157e6 3.8e9 280e6
ssig2 = this._ssig1 * csig12 + this._csig1 * ssig12;
csig2 = this._csig1 * csig12 - this._ssig1 * ssig12;
B12 = g.SinCosSeries(true, ssig2, csig2, this._C1a);
serr = (1 + this._A1m1) * (sig12 + (B12 - this._B11)) -
s12_a12 / this._b;
sig12 = sig12 - serr / Math.sqrt(1 + this._k2 * m.sq(ssig2));
ssig12 = Math.sin(sig12); csig12 = Math.cos(sig12);
// Update B12 below
}
}
// sig2 = sig1 + sig12
ssig2 = this._ssig1 * csig12 + this._csig1 * ssig12;
csig2 = this._csig1 * csig12 - this._ssig1 * ssig12;
dn2 = Math.sqrt(1 + this._k2 * m.sq(ssig2));
if (outmask & (g.DISTANCE | g.REDUCEDLENGTH | g.GEODESICSCALE)) {
if (arcmode || Math.abs(this.f) > 0.01)
B12 = g.SinCosSeries(true, ssig2, csig2, this._C1a);
AB1 = (1 + this._A1m1) * (B12 - this._B11);
}
// sin(bet2) = cos(alp0) * sin(sig2)
sbet2 = this._calp0 * ssig2;
// Alt: cbet2 = hypot(csig2, salp0 * ssig2);
cbet2 = m.hypot(this._salp0, this._calp0 * csig2);
if (cbet2 === 0)
// I.e., salp0 = 0, csig2 = 0. Break the degeneracy in this case
cbet2 = csig2 = g.tiny_;
// tan(alp0) = cos(sig2)*tan(alp2)
salp2 = this._salp0; calp2 = this._calp0 * csig2; // No need to normalize
if (arcmode && (outmask & g.DISTANCE))
vals.s12 = this._b * ((1 + this._A1m1) * sig12 + AB1);
if (outmask & g.LONGITUDE) {
// tan(omg2) = sin(alp0) * tan(sig2)
somg2 = this._salp0 * ssig2; comg2 = csig2; // No need to normalize
E = m.copysign(1, this._salp0);
// omg12 = omg2 - omg1
omg12 = outmask & g.LONG_UNROLL ?
E * (sig12 -
(Math.atan2(ssig2, csig2) -
Math.atan2(this._ssig1, this._csig1)) +
(Math.atan2(E * somg2, comg2) -
Math.atan2(E * this._somg1, this._comg1))) :
Math.atan2(somg2 * this._comg1 - comg2 * this._somg1,
comg2 * this._comg1 + somg2 * this._somg1);
lam12 = omg12 + this._A3c *
( sig12 + (g.SinCosSeries(true, ssig2, csig2, this._C3a) -
this._B31));
lon12 = lam12 / m.degree;
vals.lon2 = outmask & g.LONG_UNROLL ? this.lon1 + lon12 :
m.AngNormalize(m.AngNormalize(this.lon1) + m.AngNormalize(lon12));
}
if (outmask & g.LATITUDE)
vals.lat2 = m.atan2d(sbet2, this._f1 * cbet2);
if (outmask & g.AZIMUTH)
vals.azi2 = m.atan2d(salp2, calp2);
if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
B22 = g.SinCosSeries(true, ssig2, csig2, this._C2a);
AB2 = (1 + this._A2m1) * (B22 - this._B21);
J12 = (this._A1m1 - this._A2m1) * sig12 + (AB1 - AB2);
if (outmask & g.REDUCEDLENGTH)
// Add parens around (_csig1 * ssig2) and (_ssig1 * csig2) to ensure
// accurate cancellation in the case of coincident points.
vals.m12 = this._b * (( dn2 * (this._csig1 * ssig2) -
this._dn1 * (this._ssig1 * csig2)) -
this._csig1 * csig2 * J12);
if (outmask & g.GEODESICSCALE) {
t = this._k2 * (ssig2 - this._ssig1) * (ssig2 + this._ssig1) /
(this._dn1 + dn2);
vals.M12 = csig12 +
(t * ssig2 - csig2 * J12) * this._ssig1 / this._dn1;
vals.M21 = csig12 -
(t * this._ssig1 - this._csig1 * J12) * ssig2 / dn2;
}
}
if (outmask & g.AREA) {
B42 = g.SinCosSeries(false, ssig2, csig2, this._C4a);
if (this._calp0 === 0 || this._salp0 === 0) {
// alp12 = alp2 - alp1, used in atan2 so no need to normalize
salp12 = salp2 * this.calp1 - calp2 * this.salp1;
calp12 = calp2 * this.calp1 + salp2 * this.salp1;
} else {
// tan(alp) = tan(alp0) * sec(sig)
// tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
// = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
// If csig12 > 0, write
// csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
// else
// csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
// No need to normalize
salp12 = this._calp0 * this._salp0 *
(csig12 <= 0 ? this._csig1 * (1 - csig12) + ssig12 * this._ssig1 :
ssig12 * (this._csig1 * ssig12 / (1 + csig12) + this._ssig1));
calp12 = m.sq(this._salp0) + m.sq(this._calp0) * this._csig1 * csig2;
}
vals.S12 = this._c2 * Math.atan2(salp12, calp12) +
this._A4 * (B42 - this._B41);
}
if (!arcmode)
vals.a12 = sig12 / m.degree;
return vals;
};
/**
* @summary Find the position on the line given s12.
* @param {number} s12 the distance from the first point to the second in
* meters.
* @param {bitmask} [outmask = STANDARD] which results to include; this is
* subject to the capabilities of the object.
* @returns {object} the requested results.
* @description The lat1, lon1, azi1, s12, and a12 fields of the result are
* always set; s12 is included if arcmode is false. For details on the
* outmask parameter, see {@tutorial 2-interface}, "The outmask and caps
* parameters".
*/
l.GeodesicLine.prototype.Position = function(s12, outmask) {
return this.GenPosition(false, s12, outmask);
};
/**
* @summary Find the position on the line given a12.
* @param {number} a12 the arc length from the first point to the second in
* degrees.
* @param {bitmask} [outmask = STANDARD] which results to include; this is
* subject to the capabilities of the object.
* @returns {object} the requested results.
* @description The lat1, lon1, azi1, and a12 fields of the result are
* always set. For details on the outmask parameter, see {@tutorial
* 2-interface}, "The outmask and caps parameters".
*/
l.GeodesicLine.prototype.ArcPosition = function(a12, outmask) {
return this.GenPosition(true, a12, outmask);
};
/**
* @summary Specify position of point 3 in terms of either distance or arc
* length.
* @param {bool} arcmode boolean flag determining the meaning of the second
* parameter; if arcmode is false, then the GeodesicLine object must have
* been constructed with caps |= DISTANCE_IN.
* @param {number} s13_a13 if arcmode is false, this is the distance from
* point 1 to point 3 (meters); otherwise it is the arc length from
* point 1 to point 3 (degrees); it can be negative.
**********************************************************************/
l.GeodesicLine.prototype.GenSetDistance = function(arcmode, s13_a13) {
if (arcmode)
this.SetArc(s13_a13);
else
this.SetDistance(s13_a13);
};
/**
* @summary Specify position of point 3 in terms distance.
* @param {number} s13 the distance from point 1 to point 3 (meters); it
* can be negative.
**********************************************************************/
l.GeodesicLine.prototype.SetDistance = function(s13) {
var r;
this.s13 = s13;
r = this.GenPosition(false, this.s13, g.ARC);
this.a13 = 0 + r.a12; // the 0+ converts undefined into NaN
};
/**
* @summary Specify position of point 3 in terms of arc length.
* @param {number} a13 the arc length from point 1 to point 3 (degrees);
* it can be negative.
**********************************************************************/
l.GeodesicLine.prototype.SetArc = function(a13) {
var r;
this.a13 = a13;
r = this.GenPosition(true, this.a13, g.DISTANCE);
this.s13 = 0 + r.s12; // the 0+ converts undefined into NaN
};
})(GeographicLib.Geodesic, GeographicLib.GeodesicLine, GeographicLib.Math);
/**************** PolygonArea.js ****************/
/*
* PolygonArea.js
* Transcription of PolygonArea.[ch]pp into JavaScript.
*
* See the documentation for the C++ class. The conversion is a literal
* conversion from C++.
*
* The algorithms are derived in
*
* Charles F. F. Karney,
* Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
* https://doi.org/10.1007/s00190-012-0578-z
* Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
*
* Copyright (c) Charles Karney (2011-2017) and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
*/
// Load AFTER GeographicLib/Math.js and GeographicLib/Geodesic.js
(function(
/**
* @exports GeographicLib/PolygonArea
* @description Compute the area of geodesic polygons via the
* {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea}
* class.
*/
p, g, m, a) {
var transit, transitdirect;
transit = function(lon1, lon2) {
// Return 1 or -1 if crossing prime meridian in east or west direction.
// Otherwise return zero.
var lon12, cross;
// Compute lon12 the same way as Geodesic::Inverse.
lon1 = m.AngNormalize(lon1);
lon2 = m.AngNormalize(lon2);
lon12 = m.AngDiff(lon1, lon2).s;
cross = lon1 <= 0 && lon2 > 0 && lon12 > 0 ? 1 :
(lon2 <= 0 && lon1 > 0 && lon12 < 0 ? -1 : 0);
return cross;
};
// an alternate version of transit to deal with longitudes in the direct
// problem.
transitdirect = function(lon1, lon2) {
// We want to compute exactly
// int(floor(lon2 / 360)) - int(floor(lon1 / 360))
// Since we only need the parity of the result we can use std::remquo but
// this is buggy with g++ 4.8.3 and requires C++11. So instead we do
lon1 = lon1 % 720.0; lon2 = lon2 % 720.0;
return ( ((lon2 >= 0 && lon2 < 360) || lon2 < -360 ? 0 : 1) -
((lon1 >= 0 && lon1 < 360) || lon1 < -360 ? 0 : 1) );
};
/**
* @class
* @property {number} a the equatorial radius (meters).
* @property {number} f the flattening.
* @property {bool} polyline whether the PolygonArea object describes a
* polyline or a polygon.
* @property {number} num the number of vertices so far.
* @property {number} lat the current latitude (degrees).
* @property {number} lon the current longitude (degrees).
* @summary Initialize a PolygonArea object.
* @classdesc Computes the area and perimeter of a geodesic polygon.
* This object is usually instantiated by
* {@link module:GeographicLib/Geodesic.Geodesic#Polygon Geodesic.Polygon}.
* @param {object} geod a {@link module:GeographicLib/Geodesic.Geodesic
* Geodesic} object.
* @param {bool} [polyline = false] if true the new PolygonArea object
* describes a polyline instead of a polygon.
*/
p.PolygonArea = function(geod, polyline) {
this._geod = geod;
this.a = this._geod.a;
this.f = this._geod.f;
this._area0 = 4 * Math.PI * geod._c2;
this.polyline = !polyline ? false : polyline;
this._mask = g.LATITUDE | g.LONGITUDE | g.DISTANCE |
(this.polyline ? g.NONE : g.AREA | g.LONG_UNROLL);
if (!this.polyline)
this._areasum = new a.Accumulator(0);
this._perimetersum = new a.Accumulator(0);
this.Clear();
};
/**
* @summary Clear the PolygonArea object, setting the number of vertices to
* 0.
*/
p.PolygonArea.prototype.Clear = function() {
this.num = 0;
this._crossings = 0;
if (!this.polyline)
this._areasum.Set(0);
this._perimetersum.Set(0);
this._lat0 = this._lon0 = this.lat = this.lon = Number.NaN;
};
/**
* @summary Add the next vertex to the polygon.
* @param {number} lat the latitude of the point (degrees).
* @param {number} lon the longitude of the point (degrees).
* @description This adds an edge from the current vertex to the new vertex.
*/
p.PolygonArea.prototype.AddPoint = function(lat, lon) {
var t;
if (this.num === 0) {
this._lat0 = this.lat = lat;
this._lon0 = this.lon = lon;
} else {
t = this._geod.Inverse(this.lat, this.lon, lat, lon, this._mask);
this._perimetersum.Add(t.s12);
if (!this.polyline) {
this._areasum.Add(t.S12);
this._crossings += transit(this.lon, lon);
}
this.lat = lat;
this.lon = lon;
}
++this.num;
};
/**
* @summary Add the next edge to the polygon.
* @param {number} azi the azimuth at the current the point (degrees).
* @param {number} s the length of the edge (meters).
* @description This specifies the new vertex in terms of the edge from the
* current vertex.
*/
p.PolygonArea.prototype.AddEdge = function(azi, s) {
var t;
if (this.num) {
t = this._geod.Direct(this.lat, this.lon, azi, s, this._mask);
this._perimetersum.Add(s);
if (!this.polyline) {
this._areasum.Add(t.S12);
this._crossings += transitdirect(this.lon, t.lon2);
}
this.lat = t.lat2;
this.lon = t.lon2;
}
++this.num;
};
/**
* @summary Compute the perimeter and area of the polygon.
* @param {bool} reverse if true then clockwise (instead of
* counter-clockwise) traversal counts as a positive area.
* @param {bool} sign if true then return a signed result for the area if the
* polygon is traversed in the "wrong" direction instead of returning the
* area for the rest of the earth.
* @returns {object} r where r.number is the number of vertices, r.perimeter
* is the perimeter (meters), and r.area (only returned if polyline is
* false) is the area (meters2).
* @description If the object is a polygon (and not a polygon), the perimeter
* includes the length of a final edge connecting the current point to the
* initial point. If the object is a polyline, then area is nan. More
* points can be added to the polygon after this call.
*/
p.PolygonArea.prototype.Compute = function(reverse, sign) {
var vals = {number: this.num}, t, tempsum, crossings;
if (this.num < 2) {
vals.perimeter = 0;
if (!this.polyline)
vals.area = 0;
return vals;
}
if (this.polyline) {
vals.perimeter = this._perimetersum.Sum();
return vals;
}
t = this._geod.Inverse(this.lat, this.lon, this._lat0, this._lon0,
this._mask);
vals.perimeter = this._perimetersum.Sum(t.s12);
tempsum = new a.Accumulator(this._areasum);
tempsum.Add(t.S12);
crossings = this._crossings + transit(this.lon, this._lon0);
if (crossings & 1)
tempsum.Add( (tempsum.Sum() < 0 ? 1 : -1) * this._area0/2 );
// area is with the clockwise sense. If !reverse convert to
// counter-clockwise convention.
if (!reverse)
tempsum.Negate();
// If sign put area in (-area0/2, area0/2], else put area in [0, area0)
if (sign) {
if (tempsum.Sum() > this._area0/2)
tempsum.Add( -this._area0 );
else if (tempsum.Sum() <= -this._area0/2)
tempsum.Add( +this._area0 );
} else {
if (tempsum.Sum() >= this._area0)
tempsum.Add( -this._area0 );
else if (tempsum < 0)
tempsum.Add( -this._area0 );
}
vals.area = tempsum.Sum();
return vals;
};
/**
* @summary Compute the perimeter and area of the polygon with a tentative
* new vertex.
* @param {number} lat the latitude of the point (degrees).
* @param {number} lon the longitude of the point (degrees).
* @param {bool} reverse if true then clockwise (instead of
* counter-clockwise) traversal counts as a positive area.
* @param {bool} sign if true then return a signed result for the area if the
* polygon is traversed in the "wrong" direction instead of returning the
* @returns {object} r where r.number is the number of vertices, r.perimeter
* is the perimeter (meters), and r.area (only returned if polyline is
* false) is the area (meters2).
* @description A new vertex is *not* added to the polygon.
*/
p.PolygonArea.prototype.TestPoint = function(lat, lon, reverse, sign) {
var vals = {number: this.num + 1}, t, tempsum, crossings, i;
if (this.num === 0) {
vals.perimeter = 0;
if (!this.polyline)
vals.area = 0;
return vals;
}
vals.perimeter = this._perimetersum.Sum();
tempsum = this.polyline ? 0 : this._areasum.Sum();
crossings = this._crossings;
for (i = 0; i < (this.polyline ? 1 : 2); ++i) {
t = this._geod.Inverse(
i === 0 ? this.lat : lat, i === 0 ? this.lon : lon,
i !== 0 ? this._lat0 : lat, i !== 0 ? this._lon0 : lon,
this._mask);
vals.perimeter += t.s12;
if (!this.polyline) {
tempsum += t.S12;
crossings += transit(i === 0 ? this.lon : lon,
i !== 0 ? this._lon0 : lon);
}
}
if (this.polyline)
return vals;
if (crossings & 1)
tempsum += (tempsum < 0 ? 1 : -1) * this._area0/2;
// area is with the clockwise sense. If !reverse convert to
// counter-clockwise convention.
if (!reverse)
tempsum *= -1;
// If sign put area in (-area0/2, area0/2], else put area in [0, area0)
if (sign) {
if (tempsum > this._area0/2)
tempsum -= this._area0;
else if (tempsum <= -this._area0/2)
tempsum += this._area0;
} else {
if (tempsum >= this._area0)
tempsum -= this._area0;
else if (tempsum < 0)
tempsum += this._area0;
}
vals.area = tempsum;
return vals;
};
/**
* @summary Compute the perimeter and area of the polygon with a tentative
* new edge.
* @param {number} azi the azimuth of the edge (degrees).
* @param {number} s the length of the edge (meters).
* @param {bool} reverse if true then clockwise (instead of
* counter-clockwise) traversal counts as a positive area.
* @param {bool} sign if true then return a signed result for the area if the
* polygon is traversed in the "wrong" direction instead of returning the
* @returns {object} r where r.number is the number of vertices, r.perimeter
* is the perimeter (meters), and r.area (only returned if polyline is
* false) is the area (meters2).
* @description A new vertex is *not* added to the polygon.
*/
p.PolygonArea.prototype.TestEdge = function(azi, s, reverse, sign) {
var vals = {number: this.num ? this.num + 1 : 0}, t, tempsum, crossings;
if (this.num === 0)
return vals;
vals.perimeter = this._perimetersum.Sum() + s;
if (this.polyline)
return vals;
tempsum = this._areasum.Sum();
crossings = this._crossings;
t = this._geod.Direct(this.lat, this.lon, azi, s, this._mask);
tempsum += t.S12;
crossings += transitdirect(this.lon, t.lon2);
t = this._geod.Inverse(t.lat2, t.lon2, this._lat0, this._lon0, this._mask);
vals.perimeter += t.s12;
tempsum += t.S12;
crossings += transit(t.lon2, this._lon0);
if (crossings & 1)
tempsum += (tempsum < 0 ? 1 : -1) * this._area0/2;
// area is with the clockwise sense. If !reverse convert to
// counter-clockwise convention.
if (!reverse)
tempsum *= -1;
// If sign put area in (-area0/2, area0/2], else put area in [0, area0)
if (sign) {
if (tempsum > this._area0/2)
tempsum -= this._area0;
else if (tempsum <= -this._area0/2)
tempsum += this._area0;
} else {
if (tempsum >= this._area0)
tempsum -= this._area0;
else if (tempsum < 0)
tempsum += this._area0;
}
vals.area = tempsum;
return vals;
};
})(GeographicLib.PolygonArea, GeographicLib.Geodesic,
GeographicLib.Math, GeographicLib.Accumulator);
/**************** DMS.js ****************/
/*
* DMS.js
* Transcription of DMS.[ch]pp into JavaScript.
*
* See the documentation for the C++ class. The conversion is a literal
* conversion from C++.
*
* Copyright (c) Charles Karney (2011-2017) and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
*/
GeographicLib.DMS = {};
(function(
/**
* @exports GeographicLib/DMS
* @description Decode/Encode angles expressed as degrees, minutes, and
* seconds. This module defines several constants:
* - hemisphere indicator (returned by
* {@link module:GeographicLib/DMS.Decode Decode}) and a formatting
* indicator (used by
* {@link module:GeographicLib/DMS.Encode Encode})
* - NONE = 0, no designator and format as plain angle;
* - LATITUDE = 1, a N/S designator and format as latitude;
* - LONGITUDE = 2, an E/W designator and format as longitude;
* - AZIMUTH = 3, format as azimuth;
* - the specification of the trailing component in
* {@link module:GeographicLib/DMS.Encode Encode}
* - DEGREE;
* - MINUTE;
* - SECOND.
*/
d) {
var lookup, zerofill, internalDecode, numMatch,
hemispheres_ = "SNWE",
signs_ = "-+",
digits_ = "0123456789",
dmsindicators_ = "D'\":",
// dmsindicatorsu_ = "\u00b0\u2032\u2033"; // Unicode variants
dmsindicatorsu_ = "\u00b0'\"", // Use degree symbol
components_ = ["degrees", "minutes", "seconds"];
lookup = function(s, c) {
return s.indexOf(c.toUpperCase());
};
zerofill = function(s, n) {
return String("0000").substr(0, Math.max(0, Math.min(4, n-s.length))) +
s;
};
d.NONE = 0;
d.LATITUDE = 1;
d.LONGITUDE = 2;
d.AZIMUTH = 3;
d.DEGREE = 0;
d.MINUTE = 1;
d.SECOND = 2;
/**
* @summary Decode a DMS string.
* @description The interpretation of the string is given in the
* documentation of the corresponding function, Decode(string&, flag&)
* in the {@link
* https://geographiclib.sourceforge.io/html/classGeographicLib_1_1DMS.html
* C++ DMS class}
* @param {string} dms the string.
* @returns {object} r where r.val is the decoded value (degrees) and r.ind
* is a hemisphere designator, one of NONE, LATITUDE, LONGITUDE.
* @throws an error if the string is illegal.
*/
d.Decode = function(dms) {
var dmsa = dms, end,
v = 0, i = 0, mi, pi, vals,
ind1 = d.NONE, ind2, p, pa, pb;
dmsa = dmsa.replace(/\u00b0/g, 'd')
.replace(/\u00ba/g, 'd')
.replace(/\u2070/g, 'd')
.replace(/\u02da/g, 'd')
.replace(/\u2032/g, '\'')
.replace(/\u00b4/g, '\'')
.replace(/\u2019/g, '\'')
.replace(/\u2033/g, '"')
.replace(/\u201d/g, '"')
.replace(/\u2212/g, '-')
.replace(/''/g, '"')
.trim();
end = dmsa.length;
// p is pointer to the next piece that needs decoding
for (p = 0; p < end; p = pb, ++i) {
pa = p;
// Skip over initial hemisphere letter (for i == 0)
if (i === 0 && lookup(hemispheres_, dmsa.charAt(pa)) >= 0)
++pa;
// Skip over initial sign (checking for it if i == 0)
if (i > 0 || (pa < end && lookup(signs_, dmsa.charAt(pa)) >= 0))
++pa;
// Find next sign
mi = dmsa.substr(pa, end - pa).indexOf('-');
pi = dmsa.substr(pa, end - pa).indexOf('+');
if (mi < 0) mi = end; else mi += pa;
if (pi < 0) pi = end; else pi += pa;
pb = Math.min(mi, pi);
vals = internalDecode(dmsa.substr(p, pb - p));
v += vals.val; ind2 = vals.ind;
if (ind1 === d.NONE)
ind1 = ind2;
else if (!(ind2 === d.NONE || ind1 === ind2))
throw new Error("Incompatible hemisphere specifies in " +
dmsa.substr(0, pb));
}
if (i === 0)
throw new Error("Empty or incomplete DMS string " + dmsa);
return {val: v, ind: ind1};
};
internalDecode = function(dmsa) {
var vals = {}, errormsg = "",
sign, beg, end, ind1, k,
ipieces, fpieces, npiece,
icurrent, fcurrent, ncurrent, p,
pointseen,
digcount, intcount,
x;
do { // Executed once (provides the ability to break)
sign = 1;
beg = 0; end = dmsa.length;
ind1 = d.NONE;
k = -1;
if (end > beg && (k = lookup(hemispheres_, dmsa.charAt(beg))) >= 0) {
ind1 = (k & 2) ? d.LONGITUDE : d.LATITUDE;
sign = (k & 1) ? 1 : -1;
++beg;
}
if (end > beg &&
(k = lookup(hemispheres_, dmsa.charAt(end-1))) >= 0) {
if (k >= 0) {
if (ind1 !== d.NONE) {
if (dmsa.charAt(beg - 1).toUpperCase() ===
dmsa.charAt(end - 1).toUpperCase())
errormsg = "Repeated hemisphere indicators " +
dmsa.charAt(beg - 1) + " in " +
dmsa.substr(beg - 1, end - beg + 1);
else
errormsg = "Contradictory hemisphere indicators " +
dmsa.charAt(beg - 1) + " and " + dmsa.charAt(end - 1) + " in " +
dmsa.substr(beg - 1, end - beg + 1);
break;
}
ind1 = (k & 2) ? d.LONGITUDE : d.LATITUDE;
sign = (k & 1) ? 1 : -1;
--end;
}
}
if (end > beg && (k = lookup(signs_, dmsa.charAt(beg))) >= 0) {
if (k >= 0) {
sign *= k ? 1 : -1;
++beg;
}
}
if (end === beg) {
errormsg = "Empty or incomplete DMS string " + dmsa;
break;
}
ipieces = [0, 0, 0];
fpieces = [0, 0, 0];
npiece = 0;
icurrent = 0;
fcurrent = 0;
ncurrent = 0;
p = beg;
pointseen = false;
digcount = 0;
intcount = 0;
while (p < end) {
x = dmsa.charAt(p++);
if ((k = lookup(digits_, x)) >= 0) {
++ncurrent;
if (digcount > 0) {
++digcount; // Count of decimal digits
} else {
icurrent = 10 * icurrent + k;
++intcount;
}
} else if (x === '.') {
if (pointseen) {
errormsg = "Multiple decimal points in " +
dmsa.substr(beg, end - beg);
break;
}
pointseen = true;
digcount = 1;
} else if ((k = lookup(dmsindicators_, x)) >= 0) {
if (k >= 3) {
if (p === end) {
errormsg = "Illegal for colon to appear at the end of " +
dmsa.substr(beg, end - beg);
break;
}
k = npiece;
}
if (k === npiece - 1) {
errormsg = "Repeated " + components_[k] +
" component in " + dmsa.substr(beg, end - beg);
break;
} else if (k < npiece) {
errormsg = components_[k] + " component follows " +
components_[npiece - 1] + " component in " +
dmsa.substr(beg, end - beg);
break;
}
if (ncurrent === 0) {
errormsg = "Missing numbers in " + components_[k] +
" component of " + dmsa.substr(beg, end - beg);
break;
}
if (digcount > 0) {
fcurrent = parseFloat(dmsa.substr(p - intcount - digcount - 1,
intcount + digcount));
icurrent = 0;
}
ipieces[k] = icurrent;
fpieces[k] = icurrent + fcurrent;
if (p < end) {
npiece = k + 1;
icurrent = fcurrent = 0;
ncurrent = digcount = intcount = 0;
}
} else if (lookup(signs_, x) >= 0) {
errormsg = "Internal sign in DMS string " +
dmsa.substr(beg, end - beg);
break;
} else {
errormsg = "Illegal character " + x + " in DMS string " +
dmsa.substr(beg, end - beg);
break;
}
}
if (errormsg.length)
break;
if (lookup(dmsindicators_, dmsa.charAt(p - 1)) < 0) {
if (npiece >= 3) {
errormsg = "Extra text following seconds in DMS string " +
dmsa.substr(beg, end - beg);
break;
}
if (ncurrent === 0) {
errormsg = "Missing numbers in trailing component of " +
dmsa.substr(beg, end - beg);
break;
}
if (digcount > 0) {
fcurrent = parseFloat(dmsa.substr(p - intcount - digcount,
intcount + digcount));
icurrent = 0;
}
ipieces[npiece] = icurrent;
fpieces[npiece] = icurrent + fcurrent;
}
if (pointseen && digcount === 0) {
errormsg = "Decimal point in non-terminal component of " +
dmsa.substr(beg, end - beg);
break;
}
// Note that we accept 59.999999... even though it rounds to 60.
if (ipieces[1] >= 60 || fpieces[1] > 60) {
errormsg = "Minutes " + fpieces[1] + " not in range [0,60)";
break;
}
if (ipieces[2] >= 60 || fpieces[2] > 60) {
errormsg = "Seconds " + fpieces[2] + " not in range [0,60)";
break;
}
vals.ind = ind1;
// Assume check on range of result is made by calling routine (which
// might be able to offer a better diagnostic).
vals.val = sign *
( fpieces[2] ? (60*(60*fpieces[0] + fpieces[1]) + fpieces[2]) / 3600 :
( fpieces[1] ? (60*fpieces[0] + fpieces[1]) / 60 : fpieces[0] ) );
return vals;
} while (false);
vals.val = numMatch(dmsa);
if (vals.val === 0)
throw new Error(errormsg);
else
vals.ind = d.NONE;
return vals;
};
numMatch = function(s) {
var t, sign, p0, p1;
if (s.length < 3)
return 0;
t = s.toUpperCase().replace(/0+$/, "");
sign = t.charAt(0) === '-' ? -1 : 1;
p0 = t.charAt(0) === '-' || t.charAt(0) === '+' ? 1 : 0;
p1 = t.length - 1;
if (p1 + 1 < p0 + 3)
return 0;
// Strip off sign and trailing 0s
t = t.substr(p0, p1 + 1 - p0); // Length at least 3
if (t === "NAN" || t === "1.#QNAN" || t === "1.#SNAN" || t === "1.#IND" ||
t === "1.#R")
return Number.NaN;
else if (t === "INF" || t === "1.#INF")
return sign * Number.POSITIVE_INFINITY;
return 0;
};
/**
* @summary Decode two DMS strings interpreting them as a latitude/longitude
* pair.
* @param {string} stra the first string.
* @param {string} strb the first string.
* @param {bool} [longfirst = false] if true assume then longitude is given
* first (in the absense of any hemisphere indicators).
* @returns {object} r where r.lat is the decoded latitude and r.lon is the
* decoded longitude (both in degrees).
* @throws an error if the strings are illegal.
*/
d.DecodeLatLon = function(stra, strb, longfirst) {
var vals = {},
valsa = d.Decode(stra),
valsb = d.Decode(strb),
a = valsa.val, ia = valsa.ind,
b = valsb.val, ib = valsb.ind,
lat, lon;
if (!longfirst) longfirst = false;
if (ia === d.NONE && ib === d.NONE) {
// Default to lat, long unless longfirst
ia = longfirst ? d.LONGITUDE : d.LATITUDE;
ib = longfirst ? d.LATITUDE : d.LONGITUDE;
} else if (ia === d.NONE)
ia = d.LATITUDE + d.LONGITUDE - ib;
else if (ib === d.NONE)
ib = d.LATITUDE + d.LONGITUDE - ia;
if (ia === ib)
throw new Error("Both " + stra + " and " + strb + " interpreted as " +
(ia === d.LATITUDE ? "latitudes" : "longitudes"));
lat = ia === d.LATITUDE ? a : b;
lon = ia === d.LATITUDE ? b : a;
if (Math.abs(lat) > 90)
throw new Error("Latitude " + lat + " not in [-90,90]");
vals.lat = lat;
vals.lon = lon;
return vals;
};
/**
* @summary Decode a DMS string interpreting it as an arc length.
* @param {string} angstr the string (this must not include a hemisphere
* indicator).
* @returns {number} the arc length (degrees).
* @throws an error if the string is illegal.
*/
d.DecodeAngle = function(angstr) {
var vals = d.Decode(angstr),
ang = vals.val, ind = vals.ind;
if (ind !== d.NONE)
throw new Error("Arc angle " + angstr +
" includes a hemisphere N/E/W/S");
return ang;
};
/**
* @summary Decode a DMS string interpreting it as an azimuth.
* @param {string} azistr the string (this may include an E/W hemisphere
* indicator).
* @returns {number} the azimuth (degrees).
* @throws an error if the string is illegal.
*/
d.DecodeAzimuth = function(azistr) {
var vals = d.Decode(azistr),
azi = vals.val, ind = vals.ind;
if (ind === d.LATITUDE)
throw new Error("Azimuth " + azistr + " has a latitude hemisphere N/S");
return azi;
};
/**
* @summary Convert angle (in degrees) into a DMS string (using °, ',
* and ").
* @param {number} angle input angle (degrees).
* @param {number} trailing one of DEGREE, MINUTE, or SECOND to indicate
* the trailing component of the string (this component is given as a
* decimal number if necessary).
* @param {number} prec the number of digits after the decimal point for
* the trailing component.
* @param {number} [ind = NONE] a formatting indicator, one of NONE,
* LATITUDE, LONGITUDE, AZIMUTH.
* @returns {string} the resulting string formatted as follows:
* * NONE, signed result no leading zeros on degrees except in the units
* place, e.g., -8°03'.
* * LATITUDE, trailing N or S hemisphere designator, no sign, pad
* degrees to 2 digits, e.g., 08°03'S.
* * LONGITUDE, trailing E or W hemisphere designator, no sign, pad
* degrees to 3 digits, e.g., 008°03'W.
* * AZIMUTH, convert to the range [0, 360°), no sign, pad degrees to
* 3 digits, e.g., 351°57'.
*/
d.Encode = function(angle, trailing, prec, ind) {
// Assume check on range of input angle has been made by calling
// routine (which might be able to offer a better diagnostic).
var scale = 1, i, sign,
idegree, fdegree, f, pieces, ip, fp, s;
if (!ind) ind = d.NONE;
if (!isFinite(angle))
return angle < 0 ? String("-inf") :
(angle > 0 ? String("inf") : String("nan"));
// 15 - 2 * trailing = ceiling(log10(2^53/90/60^trailing)).
// This suffices to give full real precision for numbers in [-90,90]
prec = Math.min(15 - 2 * trailing, prec);
for (i = 0; i < trailing; ++i)
scale *= 60;
for (i = 0; i < prec; ++i)
scale *= 10;
if (ind === d.AZIMUTH)
angle -= Math.floor(angle/360) * 360;
sign = angle < 0 ? -1 : 1;
angle *= sign;
// Break off integer part to preserve precision in manipulation of
// fractional part.
idegree = Math.floor(angle);
fdegree = (angle - idegree) * scale + 0.5;
f = Math.floor(fdegree);
// Implement the "round ties to even" rule
fdegree = (f === fdegree && (f & 1) === 1) ? f - 1 : f;
fdegree /= scale;
fdegree = Math.floor((angle - idegree) * scale + 0.5) / scale;
if (fdegree >= 1) {
idegree += 1;
fdegree -= 1;
}
pieces = [fdegree, 0, 0];
for (i = 1; i <= trailing; ++i) {
ip = Math.floor(pieces[i - 1]);
fp = pieces[i - 1] - ip;
pieces[i] = fp * 60;
pieces[i - 1] = ip;
}
pieces[0] += idegree;
s = "";
if (ind === d.NONE && sign < 0)
s += '-';
switch (trailing) {
case d.DEGREE:
s += zerofill(pieces[0].toFixed(prec),
ind === d.NONE ? 0 :
1 + Math.min(ind, 2) + prec + (prec ? 1 : 0)) +
dmsindicatorsu_.charAt(0);
break;
default:
s += zerofill(pieces[0].toFixed(0),
ind === d.NONE ? 0 : 1 + Math.min(ind, 2)) +
dmsindicatorsu_.charAt(0);
switch (trailing) {
case d.MINUTE:
s += zerofill(pieces[1].toFixed(prec), 2 + prec + (prec ? 1 : 0)) +
dmsindicatorsu_.charAt(1);
break;
case d.SECOND:
s += zerofill(pieces[1].toFixed(0), 2) + dmsindicatorsu_.charAt(1);
s += zerofill(pieces[2].toFixed(prec), 2 + prec + (prec ? 1 : 0)) +
dmsindicatorsu_.charAt(2);
break;
default:
break;
}
}
if (ind !== d.NONE && ind !== d.AZIMUTH)
s += hemispheres_.charAt((ind === d.LATITUDE ? 0 : 2) +
(sign < 0 ? 0 : 1));
return s;
};
})(GeographicLib.DMS);
cb(GeographicLib);
})(function(geo) {
if (typeof module === 'object' && module.exports) {
/******** support loading with node's require ********/
module.exports = geo;
} else if (true) {
/******** support loading with AMD ********/
!(__WEBPACK_AMD_DEFINE_ARRAY__ = [], __WEBPACK_AMD_DEFINE_RESULT__ = function() { return geo; }.apply(exports, __WEBPACK_AMD_DEFINE_ARRAY__),
__WEBPACK_AMD_DEFINE_RESULT__ !== undefined && (module.exports = __WEBPACK_AMD_DEFINE_RESULT__));
} else {
/******** otherwise just pollute our global namespace ********/
window.GeographicLib = geo;
}
});
/***/ })
/******/ ]);
/***/ }),
/* 4 */
/***/ (function(module, exports) {
// removed by extract-text-webpack-plugin
/***/ })
/******/ ]);