# # Copyright (c) 2001 by Jim Menard # # Released under the same license as Ruby. See # http://www.ruby-lang.org/en/LICENSE.txt. # require './Triangle' class Graphics DEFAULT_SPHERE_ITERATIONS = 3 XPLUS = Point.new(1, 0, 0) # X XMINUS = Point.new(-1, 0, 0)# -X YPLUS = Point.new(0, 1, 0) # Y YMINUS = Point.new(0, -1, 0)# -Y ZPLUS = Point.new(0, 0, 1) # Z ZMINUS = Point.new(0, 0, -1)# -Z # defined w/counter-clockwise triangles OCTAHEDRON = [ Triangle.new(YPLUS, ZPLUS, XPLUS), Triangle.new(XMINUS, ZPLUS, YPLUS), Triangle.new(YMINUS, ZPLUS, XMINUS), Triangle.new(XPLUS, ZPLUS, YMINUS), Triangle.new(ZMINUS, YPLUS, XPLUS), Triangle.new(ZMINUS, XMINUS , YPLUS), Triangle.new(ZMINUS, YMINUS , XMINUS), Triangle.new(ZMINUS, XPLUS, YMINUS) ] # Defines counter-clockwise points used in OpenGL TRIANGLE_STRIP to # create a circle on the X/Z plane. Don't include center point here; # It is added when outputting the circle. SQUARE = [ XPLUS, ZMINUS, XMINUS, ZPLUS, XPLUS ] @@spheres = Hash.new() @@circles = Hash.new() def Graphics.radiansToDegrees(rad) return rad * 180.0 / Math::PI end def Graphics.degreesToRadians(deg) return deg * Math::PI / 180.0 end # Given a vector, return a point containing x, y, z rotation angles. # # atan2(x, y) = the angle formed with the x axis by the ray from the # origin to the point {x,y} def Graphics.rotations(v) return Point::ORIGIN.dup() if v.nil? return v if v == Point::ORIGIN x = Math.atan2(v.y, v.z) y = Math.atan2(v.z, v.x) z = Math.atan2(v.y, v.x) rot = Point.new(z, x, y) rot.add(Math::PI).multiplyBy(180.0).divideBy(Math::PI) rot.x = rot.x.to_i rot.y = rot.y.to_i rot.z = rot.z.to_i return rot end # Build box from corners. All faces are counter-clockwise. def Graphics.boxFromCorners(p0, p1) pa = p0.dup() pb = p1.dup() # Make sure all coords of pa are < all coords of pb if pa.x > pb.x tmp = pa.x; pa.x = pb.x; pb.x = tmp end if pa.y > pb.y tmp = pa.y; pa.y = pb.y; pb.y = tmp end if pa.z > pb.z tmp = pa.z; pa.z = pb.z; pb.z = tmp end Begin(QUAD_STRIP) # top Vertex(pb.x, pb.y, pa.z) Vertex(pa.x, pb.y, pa.z) # top/front Vertex(pb.x, pb.y, pb.z) Vertex(pa.x, pb.y, pb.z) # front/bottom Vertex(pb.x, pa.y, pb.z) Vertex(pa.x, pa.y, pb.z) # bottom/back Vertex(pb.x, pa.y, pa.z) Vertex(pa.x, pa.y, pa.z) # back/top Vertex(pb.x, pb.y, pa.z) Vertex(pa.x, pb.y, pa.z) End() Begin(QUADS) # left Vertex(pa.x, pa.y, pb.z) Vertex(pa.x, pa.y, pa.z) Vertex(pa.x, pb.y, pa.z) Vertex(pa.x, pb.y, pb.z) # right Vertex(pb.x, pa.y, pb.z) Vertex(pb.x, pa.y, pa.z) Vertex(pb.x, pb.y, pa.z) Vertex(pb.x, pb.y, pb.z) End() end # sphere() (and buildSphere()) - generate a triangle mesh approximating # a sphere by recursive subdivision. First approximation is an # octahedron; each level of refinement increases the number of # triangles by a factor of 4. # # Level 3 (128 triangles) is a good tradeoff if gouraud shading is used # to render the database. # # Usage: sphere [level] [counterClockwise] # # The value level is an integer >= 1 setting the recursion level # (default = DEFAULT_SPHERE_ITERATIONS). # The boolean counterClockwise causes triangles to be generated # with vertices in counterclockwise order as viewed from # the outside in a RHS coordinate system. The default is # counter-clockwise. # # @author Jon Leech (leech@cs.unc.edu) 3/24/89 (C version) # Ruby version by Jim Menard (jimm@io.com), May 2001. def Graphics.sphere(iterations = DEFAULT_SPHERE_ITERATIONS, counterClockwise = true) if @@spheres[iterations].nil? @@spheres[iterations] = buildSphere(iterations, OCTAHEDRON) end sphere = @@spheres[iterations] Begin(TRIANGLES) sphere.each { | triangle | triangle.points.each { | p | Vertex(p.x, p.y, p.z) if counterClockwise Vertex(p.z, p.y, p.x) if !counterClockwise } } End() end # # Subdivide each triangle in the oldObj approximation and normalize # the new points thus generated to lie on the surface of the unit # sphere. # Each input triangle with vertices labelled [0,1,2] as shown # below will be turned into four new triangles: # # Make new points # a = (0+2)/2 # b = (0+1)/2 # c = (1+2)/2 # 1 # /\ Normalize a, b, c # / \ # b/____\ c Construct new counter-clockwise triangles # /\ /\ [a,b,0] # / \ / \ [c,1,b] # /____\/____\ [c,b,a] # 0 a 2 [2,c,a] # # # The normalize step (which makes each point a, b, c unit distance # from the origin) is where we can modify the sphere's shape. # def Graphics.buildSphere(iterations, sphere) oldObj = sphere # Subdivide each starting triangle (maxlevel - 1) times iterations -= 1 iterations.times { # Create a new object. Allocate 4 * the number of points in the # the current approximation. newObj = Array.new(oldObj.length * 4) j = 0 oldObj.each { | oldt | # New midpoints a = Point.midpoint(oldt.points[0], oldt.points[2]) a.normalize!() b = Point.midpoint(oldt.points[0], oldt.points[1]) b.normalize!() c = Point.midpoint(oldt.points[1], oldt.points[2]) c.normalize!() # New triangeles. Their vertices are counter-clockwise. newObj[j] = Triangle.new(a, b, oldt.points[0]) j += 1 newObj[j] = Triangle.new(c, oldt.points[1], b) j += 1 newObj[j] = Triangle.new(c, b, a) j += 1 newObj[j] = Triangle.new(oldt.points[2], c, a) j += 1 } # Continue subdividing new triangles oldObj = newObj } return oldObj end # Creates a circle in the X/Z plane. To have the circle's normal # point down (-Y), specify clockwise instead of counter-clockwise. # To create the circle in another plane, call OpenGL's Rotate() method # before calling this. def Graphics.circle(iterations = DEFAULT_SPHERE_ITERATIONS, counterClockwise = true) if @@circles[iterations].nil? @@circles[iterations] = buildCircle(iterations, SQUARE) end circle = @@circles[iterations] Begin(TRIANGLE_FAN) Vertex(0, 0, 0) if counterClockwise circle.each { | p | Vertex(p.x, 0, p.z) } else circle.reverse.each { | p | Vertex(p.x, 0, p.z) } end End() end # Different than buildSphere because we are creating triangles to # be used in an OpenGL TRIANGLE_FAN operation. Thus the first point # (the center) is always inviolate. We create new points between # the remaining points. def Graphics.buildCircle(iterations, circle) oldObj = circle # Subdivide each starting line segment (maxlevel - 1) times iterations -= 1 iterations.times { # Create a new object. Allocate 2 * the number of points in the # the current approximation. Subtract one because the last point # (same as the first point) is simply copied. newObj = Array.new(oldObj.length * 2 - 1) prevP = nil j = 0 oldObj.each { | p | if !prevP.nil? newObj[j] = prevP j += 1 # New midpoint a = Point.midpoint(prevP, p) a.normalize!() newObj[j] = a j += 1 end prevP = p } newObj[j] = prevP # Copy last point # Continue subdividing new triangles oldObj = newObj } return oldObj end end