/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include #include #include #if defined(OPENSSL_WINDOWS) OPENSSL_MSVC_PRAGMA(warning(push, 3)) #include OPENSSL_MSVC_PRAGMA(warning(pop)) #endif #if defined(BORINGSSL_MALLOC_FAILURE_TESTING) #include #include #include #endif #include "internal.h" #define OPENSSL_MALLOC_PREFIX 8 static_assert(OPENSSL_MALLOC_PREFIX >= sizeof(size_t), "size_t too large"); #if defined(OPENSSL_ASAN) void __asan_poison_memory_region(const volatile void *addr, size_t size); void __asan_unpoison_memory_region(const volatile void *addr, size_t size); #else static void __asan_poison_memory_region(const void *addr, size_t size) {} static void __asan_unpoison_memory_region(const void *addr, size_t size) {} #endif // Windows doesn't really support weak symbols as of May 2019, and Clang on // Windows will emit strong symbols instead. See // https://bugs.llvm.org/show_bug.cgi?id=37598 #if defined(__ELF__) && defined(__GNUC__) #define WEAK_SYMBOL_FUNC(rettype, name, args) \ rettype name args __attribute__((weak)); #else #define WEAK_SYMBOL_FUNC(rettype, name, args) static rettype(*name) args = NULL; #endif // sdallocx is a sized |free| function. By passing the size (which we happen to // always know in BoringSSL), the malloc implementation can save work. We cannot // depend on |sdallocx| being available, however, so it's a weak symbol. // // This will always be safe, but will only be overridden if the malloc // implementation is statically linked with BoringSSL. So, if |sdallocx| is // provided in, say, libc.so, we still won't use it because that's dynamically // linked. This isn't an ideal result, but its helps in some cases. WEAK_SYMBOL_FUNC(void, sdallocx, (void *ptr, size_t size, int flags)); // The following three functions can be defined to override default heap // allocation and freeing. If defined, it is the responsibility of // |OPENSSL_memory_free| to zero out the memory before returning it to the // system. |OPENSSL_memory_free| will not be passed NULL pointers. // // WARNING: These functions are called on every allocation and free in // BoringSSL across the entire process. They may be called by any code in the // process which calls BoringSSL, including in process initializers and thread // destructors. When called, BoringSSL may hold pthreads locks. Any other code // in the process which, directly or indirectly, calls BoringSSL may be on the // call stack and may itself be using arbitrary synchronization primitives. // // As a result, these functions may not have the usual programming environment // available to most C or C++ code. In particular, they may not call into // BoringSSL, or any library which depends on BoringSSL. Any synchronization // primitives used must tolerate every other synchronization primitive linked // into the process, including pthreads locks. Failing to meet these constraints // may result in deadlocks, crashes, or memory corruption. WEAK_SYMBOL_FUNC(void *, OPENSSL_memory_alloc, (size_t size)); WEAK_SYMBOL_FUNC(void, OPENSSL_memory_free, (void *ptr)); WEAK_SYMBOL_FUNC(size_t, OPENSSL_memory_get_size, (void *ptr)); #if defined(BORINGSSL_MALLOC_FAILURE_TESTING) static CRYPTO_MUTEX malloc_failure_lock = CRYPTO_MUTEX_INIT; static uint64_t current_malloc_count = 0; static uint64_t malloc_number_to_fail = 0; static int malloc_failure_enabled = 0, break_on_malloc_fail = 0, any_malloc_failed = 0; static void malloc_exit_handler(void) { CRYPTO_MUTEX_lock_read(&malloc_failure_lock); if (any_malloc_failed) { // Signal to the test driver that some allocation failed, so it knows to // increment the counter and continue. _exit(88); } CRYPTO_MUTEX_unlock_read(&malloc_failure_lock); } static void init_malloc_failure(void) { const char *env = getenv("MALLOC_NUMBER_TO_FAIL"); if (env != NULL && env[0] != 0) { char *endptr; malloc_number_to_fail = strtoull(env, &endptr, 10); if (*endptr == 0) { malloc_failure_enabled = 1; atexit(malloc_exit_handler); } } break_on_malloc_fail = getenv("MALLOC_BREAK_ON_FAIL") != NULL; } // should_fail_allocation returns one if the current allocation should fail and // zero otherwise. static int should_fail_allocation() { static CRYPTO_once_t once = CRYPTO_ONCE_INIT; CRYPTO_once(&once, init_malloc_failure); if (!malloc_failure_enabled) { return 0; } // We lock just so multi-threaded tests are still correct, but we won't test // every malloc exhaustively. CRYPTO_MUTEX_lock_write(&malloc_failure_lock); int should_fail = current_malloc_count == malloc_number_to_fail; current_malloc_count++; any_malloc_failed = any_malloc_failed || should_fail; CRYPTO_MUTEX_unlock_write(&malloc_failure_lock); if (should_fail && break_on_malloc_fail) { raise(SIGTRAP); } if (should_fail) { errno = ENOMEM; } return should_fail; } void OPENSSL_reset_malloc_counter_for_testing(void) { CRYPTO_MUTEX_lock_write(&malloc_failure_lock); current_malloc_count = 0; CRYPTO_MUTEX_unlock_write(&malloc_failure_lock); } #else static int should_fail_allocation(void) { return 0; } #endif void *OPENSSL_malloc(size_t size) { if (should_fail_allocation()) { goto err; } if (OPENSSL_memory_alloc != NULL) { assert(OPENSSL_memory_free != NULL); assert(OPENSSL_memory_get_size != NULL); void *ptr = OPENSSL_memory_alloc(size); if (ptr == NULL && size != 0) { goto err; } return ptr; } if (size + OPENSSL_MALLOC_PREFIX < size) { goto err; } void *ptr = malloc(size + OPENSSL_MALLOC_PREFIX); if (ptr == NULL) { goto err; } *(size_t *)ptr = size; __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); return ((uint8_t *)ptr) + OPENSSL_MALLOC_PREFIX; err: // This only works because ERR does not call OPENSSL_malloc. OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE); return NULL; } void *OPENSSL_zalloc(size_t size) { void *ret = OPENSSL_malloc(size); if (ret != NULL) { OPENSSL_memset(ret, 0, size); } return ret; } void *OPENSSL_calloc(size_t num, size_t size) { if (size != 0 && num > SIZE_MAX / size) { OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); return NULL; } return OPENSSL_zalloc(num * size); } void OPENSSL_free(void *orig_ptr) { if (orig_ptr == NULL) { return; } if (OPENSSL_memory_free != NULL) { OPENSSL_memory_free(orig_ptr); return; } void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX; __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); size_t size = *(size_t *)ptr; OPENSSL_cleanse(ptr, size + OPENSSL_MALLOC_PREFIX); // ASan knows to intercept malloc and free, but not sdallocx. #if defined(OPENSSL_ASAN) (void)sdallocx; free(ptr); #else if (sdallocx) { sdallocx(ptr, size + OPENSSL_MALLOC_PREFIX, 0 /* flags */); } else { free(ptr); } #endif } void *OPENSSL_realloc(void *orig_ptr, size_t new_size) { if (orig_ptr == NULL) { return OPENSSL_malloc(new_size); } size_t old_size; if (OPENSSL_memory_get_size != NULL) { old_size = OPENSSL_memory_get_size(orig_ptr); } else { void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX; __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); old_size = *(size_t *)ptr; __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); } void *ret = OPENSSL_malloc(new_size); if (ret == NULL) { return NULL; } size_t to_copy = new_size; if (old_size < to_copy) { to_copy = old_size; } memcpy(ret, orig_ptr, to_copy); OPENSSL_free(orig_ptr); return ret; } void OPENSSL_cleanse(void *ptr, size_t len) { #if defined(OPENSSL_WINDOWS) SecureZeroMemory(ptr, len); #else OPENSSL_memset(ptr, 0, len); #if !defined(OPENSSL_NO_ASM) /* As best as we can tell, this is sufficient to break any optimisations that might try to eliminate "superfluous" memsets. If there's an easy way to detect memset_s, it would be better to use that. */ __asm__ __volatile__("" : : "r"(ptr) : "memory"); #endif #endif // !OPENSSL_NO_ASM } void OPENSSL_clear_free(void *ptr, size_t unused) { OPENSSL_free(ptr); } int CRYPTO_secure_malloc_init(size_t size, size_t min_size) { return 0; } int CRYPTO_secure_malloc_initialized(void) { return 0; } size_t CRYPTO_secure_used(void) { return 0; } void *OPENSSL_secure_malloc(size_t size) { return OPENSSL_malloc(size); } void OPENSSL_secure_clear_free(void *ptr, size_t len) { OPENSSL_clear_free(ptr, len); } int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) { const uint8_t *a = in_a; const uint8_t *b = in_b; uint8_t x = 0; for (size_t i = 0; i < len; i++) { x |= a[i] ^ b[i]; } return x; } uint32_t OPENSSL_hash32(const void *ptr, size_t len) { // These are the FNV-1a parameters for 32 bits. static const uint32_t kPrime = 16777619u; static const uint32_t kOffsetBasis = 2166136261u; const uint8_t *in = ptr; uint32_t h = kOffsetBasis; for (size_t i = 0; i < len; i++) { h ^= in[i]; h *= kPrime; } return h; } uint32_t OPENSSL_strhash(const char *s) { return OPENSSL_hash32(s, strlen(s)); } size_t OPENSSL_strnlen(const char *s, size_t len) { for (size_t i = 0; i < len; i++) { if (s[i] == 0) { return i; } } return len; } char *OPENSSL_strdup(const char *s) { if (s == NULL) { return NULL; } const size_t len = strlen(s) + 1; char *ret = OPENSSL_malloc(len); if (ret == NULL) { return NULL; } OPENSSL_memcpy(ret, s, len); return ret; } int OPENSSL_isalpha(int c) { return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); } int OPENSSL_isdigit(int c) { return c >= '0' && c <= '9'; } int OPENSSL_isxdigit(int c) { return OPENSSL_isdigit(c) || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F'); } int OPENSSL_fromxdigit(uint8_t *out, int c) { if (OPENSSL_isdigit(c)) { *out = c - '0'; return 1; } if ('a' <= c && c <= 'f') { *out = c - 'a' + 10; return 1; } if ('A' <= c && c <= 'F') { *out = c - 'A' + 10; return 1; } return 0; } int OPENSSL_isalnum(int c) { return OPENSSL_isalpha(c) || OPENSSL_isdigit(c); } int OPENSSL_tolower(int c) { if (c >= 'A' && c <= 'Z') { return c + ('a' - 'A'); } return c; } int OPENSSL_isspace(int c) { return c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r' || c == ' '; } int OPENSSL_strcasecmp(const char *a, const char *b) { for (size_t i = 0;; i++) { const int aa = OPENSSL_tolower(a[i]); const int bb = OPENSSL_tolower(b[i]); if (aa < bb) { return -1; } else if (aa > bb) { return 1; } else if (aa == 0) { return 0; } } } int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) { for (size_t i = 0; i < n; i++) { const int aa = OPENSSL_tolower(a[i]); const int bb = OPENSSL_tolower(b[i]); if (aa < bb) { return -1; } else if (aa > bb) { return 1; } else if (aa == 0) { return 0; } } return 0; } int BIO_snprintf(char *buf, size_t n, const char *format, ...) { va_list args; va_start(args, format); int ret = BIO_vsnprintf(buf, n, format, args); va_end(args); return ret; } int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) { return vsnprintf(buf, n, format, args); } int OPENSSL_vasprintf_internal(char **str, const char *format, va_list args, int system_malloc) { void *(*allocate)(size_t) = system_malloc ? malloc : OPENSSL_malloc; void (*deallocate)(void *) = system_malloc ? free : OPENSSL_free; void *(*reallocate)(void *, size_t) = system_malloc ? realloc : OPENSSL_realloc; char *candidate = NULL; size_t candidate_len = 64; // TODO(bbe) what's the best initial size? if ((candidate = allocate(candidate_len)) == NULL) { goto err; } va_list args_copy; va_copy(args_copy, args); int ret = vsnprintf(candidate, candidate_len, format, args_copy); va_end(args_copy); if (ret < 0) { goto err; } if ((size_t)ret >= candidate_len) { // Too big to fit in allocation. char *tmp; candidate_len = (size_t)ret + 1; if ((tmp = reallocate(candidate, candidate_len)) == NULL) { goto err; } candidate = tmp; ret = vsnprintf(candidate, candidate_len, format, args); } // At this point this should not happen unless vsnprintf is insane. if (ret < 0 || (size_t)ret >= candidate_len) { goto err; } *str = candidate; return ret; err: deallocate(candidate); *str = NULL; errno = ENOMEM; return -1; } int OPENSSL_vasprintf(char **str, const char *format, va_list args) { return OPENSSL_vasprintf_internal(str, format, args, /*system_malloc=*/0); } int OPENSSL_asprintf(char **str, const char *format, ...) { va_list args; va_start(args, format); int ret = OPENSSL_vasprintf(str, format, args); va_end(args); return ret; } char *OPENSSL_strndup(const char *str, size_t size) { size = OPENSSL_strnlen(str, size); size_t alloc_size = size + 1; if (alloc_size < size) { // overflow OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE); return NULL; } char *ret = OPENSSL_malloc(alloc_size); if (ret == NULL) { return NULL; } OPENSSL_memcpy(ret, str, size); ret[size] = '\0'; return ret; } size_t OPENSSL_strlcpy(char *dst, const char *src, size_t dst_size) { size_t l = 0; for (; dst_size > 1 && *src; dst_size--) { *dst++ = *src++; l++; } if (dst_size) { *dst = 0; } return l + strlen(src); } size_t OPENSSL_strlcat(char *dst, const char *src, size_t dst_size) { size_t l = 0; for (; dst_size > 0 && *dst; dst_size--, dst++) { l++; } return l + OPENSSL_strlcpy(dst, src, dst_size); } void *OPENSSL_memdup(const void *data, size_t size) { if (size == 0) { return NULL; } void *ret = OPENSSL_malloc(size); if (ret == NULL) { return NULL; } OPENSSL_memcpy(ret, data, size); return ret; } void *CRYPTO_malloc(size_t size, const char *file, int line) { return OPENSSL_malloc(size); } void *CRYPTO_realloc(void *ptr, size_t new_size, const char *file, int line) { return OPENSSL_realloc(ptr, new_size); } void CRYPTO_free(void *ptr, const char *file, int line) { OPENSSL_free(ptr); }