require "spec_helper"
require "fileutils"
RSpec.describe Metanorma::Utils do
it "has a version number" do
expect(Metanorma::Utils::VERSION).not_to be nil
end
it "normalises anchors" do
expect(Metanorma::Utils.to_ncname("/:ab")).to eq "__ab"
end
it "sets metanorma IDs if not provided" do
expect(Metanorma::Utils.anchor_or_uuid()).to match (/^_[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$/)
expect(Metanorma::Utils.anchor_or_uuid(Dummy.new(nil))).to match (/^_[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$/)
expect(Metanorma::Utils.anchor_or_uuid(Dummy.new(""))).to match (/^_[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$/)
expect(Metanorma::Utils.anchor_or_uuid(Dummy.new("A"))).to eq "A"
end
it "applies Asciidoctor substitutions" do
require "metanorma-standoc"
expect(Metanorma::Utils.asciidoc_sub("A -- B")).to eq "A — B"
expect(Metanorma::Utils.asciidoc_sub("*A* stem:[x]")).to eq "Ax"
end
it "finds file path of docfile" do
d = Dummy.new
expect(Metanorma::Utils.localdir(d)).to eq "./"
d.docfile = "spec/utils_spec.rb"
expect(Metanorma::Utils.localdir(d)).to eq "spec/"
end
it "applies smart formatting" do
expect(Metanorma::Utils.smartformat("A - B A -- B A--B '80s '80' ")).to eq "A — B A — B A—B ’80s ‘80’ <A>"
end
it "applies en-dash normalisation" do
a = Nokogiri::XML(<<~INPUT)
A -- B A - BA--B
INPUT
Metanorma::Utils.endash_date(a)
expect(a.to_xml).to be_equivalent_to <<~OUTPUT
A–B A–BA–B
OUTPUT
end
it "sets hash values by dotted key path" do
a = {}
a = Metanorma::Utils.set_nested_value(a, ["X"], "x")
a = Metanorma::Utils.set_nested_value(a, ["X1"], 9)
a = Metanorma::Utils.set_nested_value(a, ["X2"], [3])
a = Metanorma::Utils.set_nested_value(a, ["X3"], {"a" =>"b"})
expect(a.to_s).to be_equivalent_to <<~OUTPUT
{"X"=>"x", "X1"=>9, "X2"=>[3], "X3"=>{"a"=>"b"}}
OUTPUT
a = Metanorma::Utils.set_nested_value(a, ["X2"], 4)
a = Metanorma::Utils.set_nested_value(a, ["X1"], 4)
expect(a.to_s).to be_equivalent_to <<~OUTPUT
{"X"=>"x", "X1"=>[9, 4], "X2"=>[3, 4], "X3"=>{"a"=>"b"}}
OUTPUT
a = Metanorma::Utils.set_nested_value(a, ["X2", "A"], 5)
a = Metanorma::Utils.set_nested_value(a, ["X2a"], [])
a = Metanorma::Utils.set_nested_value(a, ["X2a", "A"], 6)
a = Metanorma::Utils.set_nested_value(a, ["X4", "A"], 10)
a = Metanorma::Utils.set_nested_value(a, ["X3", "A"], 7)
a = Metanorma::Utils.set_nested_value(a, ["X3", "a"], 8)
a = Metanorma::Utils.set_nested_value(a, ["X1", "a"], 11)
expect(a.to_s).to be_equivalent_to <<~OUTPUT
{"X"=>"x", "X1"=>[9, 4, {"a"=>11}], "X2"=>[3, 4, {"A"=>5}], "X3"=>{"a"=>["b", 8], "A"=>7}, "X2a"=>[{"A"=>6}], "X4"=>{"A"=>10}}
OUTPUT
end
it "rewrites SVGs" do
FileUtils.cp "spec/fixtures/action_schemaexpg1.svg", "action_schemaexpg1.svg"
FileUtils.cp "spec/fixtures/action_schemaexpg1.svg", "action_schemaexpg2.svg"
xmldoc = Nokogiri::XML(<<~INPUT)
Document titleenpublished2021articleComputerComputerPhoneComputerPhoneaction_schema.basicCoffeeComputerPhoneComputerPhoneaction_schema.basicCoffee
INPUT
Metanorma::Utils.svgmap_rewrite(xmldoc)
xmldoc1 = xmldoc.dup
xmldoc&.at("//image[@alt = 'Workmap1']")&.remove
expect(xmlpp(xmldoc.to_xml)).to be_equivalent_to xmlpp(<<~OUTPUT)
Document titleenpublished2021articleComputeraction_schema.basicCoffeeaction_schema.basic
Coffee
OUTPUT
expect(xmlpp(File.read("action_schemaexpg1.svg", encoding: "utf-8").sub(%r{}m, ""))).to be_equivalent_to <<~OUTPUT
OUTPUT
expect(xmlpp(File.read("action_schemaexpg2.svg", encoding: "utf-8").sub(%r{}m, ""))).to be_equivalent_to <<~OUTPUT
OUTPUT
expect(xmlpp(File.read(Metanorma::Utils.save_dataimage(xmldoc1.at("//image[@alt = 'Workmap1']/@src"))))).to be_equivalent_to <<~OUTPUT
OUTPUT
end
it "rewrites SVGs with namespaces" do
FileUtils.cp "spec/fixtures/action_schemaexpg1.svg", "action_schemaexpg1.svg"
FileUtils.cp "spec/fixtures/action_schemaexpg1.svg", "action_schemaexpg2.svg"
xmldoc = Nokogiri::XML(<<~INPUT)
Document titleenpublished2021articleComputerComputerPhoneComputerPhoneaction_schema.basicCoffee
INPUT
Metanorma::Utils.svgmap_rewrite(xmldoc)
expect(xmlpp(xmldoc.to_xml)).to be_equivalent_to xmlpp(<<~OUTPUT)
Document titleenpublished2021articleComputeraction_schema.basicCoffee
OUTPUT
end
# not testing Asciidoctor log extraction here
it "generates log" do
xml = Nokogiri::XML(<<~INPUT)
c
INPUT
FileUtils.rm_f("log.txt")
log = Metanorma::Utils::Log.new
log.add("Category 1", nil, "Message 1")
log.add("Category 1", "node", "Message 2")
log.add("Category 2", xml.at("//xml/a/b"), "Message 3")
log.write("log.txt")
expect(File.exist?("log.txt")).to be true
file = File.read("log.txt", encoding: "utf-8")
expect(file).to eq <<~OUTPUT
log.txt errors
== Category 1
(): Message 1
(node): Message 2
== Category 2
(XML Line 000003): Message 3
c
OUTPUT
end
def datauri(uri, localdir = "")
return uri if /^data:/.match(uri)
path = File.join(localdir, uri)
types = MIME::Types.type_for(path)
type = types ? types.first.to_s : 'text/plain; charset="utf-8"'
bin = File.open(path, 'rb', &:read)
data = Base64.strict_encode64(bin)
"data:#{type};base64,#{data}"
end
it "generates data uris" do
expect(Metanorma::Utils.datauri("data:xyz")).to eq "data:xyz"
expect(Metanorma::Utils.datauri("spec/fixtures/rice_image1.png")).to be_equivalent_to ""
expect(Metanorma::Utils.datauri("rice_image1.png", "spec/fixtures")).to be_equivalent_to ""
expect(Metanorma::Utils.datauri2mime("")&.first&.to_s).to eq "image/png"
end
end