Sha256: e9f86cef78a546f62d607f3b724d4c52c75ec71a03eb6031f37b0b0ed5d120e5

Contents?: true

Size: 1.06 KB

Versions: 18

Compression:

Stored size: 1.06 KB

Contents

require "dnn"
require "dnn/lib/mnist"
#require "numo/linalg/autoloader"

include Numo
include DNN::Layers
include DNN::Activations
include DNN::Optimizers
Model = DNN::Model
MNIST = DNN::MNIST

x_train, y_train = MNIST.load_train
x_test, y_test = MNIST.load_test

x_train = SFloat.cast(x_train).reshape(x_train.shape[0], 28, 28, 1)
x_test = SFloat.cast(x_test).reshape(x_test.shape[0], 28, 28, 1)

x_train /= 255
x_test /= 255

y_train = DNN::Util.to_categorical(y_train, 10)
y_test = DNN::Util.to_categorical(y_test, 10)

model = Model.new

model << InputLayer.new([28, 28, 1])

model << Conv2D.new(16, 5)
model << BatchNormalization.new
model << ReLU.new

model << MaxPool2D.new(2)

model << Conv2D.new(32, 5)
model << BatchNormalization.new
model << ReLU.new

model << Flatten.new

model << Dense.new(256)
model << BatchNormalization.new
model << ReLU.new
model << Dropout.new(0.5)

model << Dense.new(10)
model << SoftmaxWithLoss.new

model.compile(Adam.new)

model.train(x_train, y_train, 10, batch_size: 100, test: [x_test, y_test])

Version data entries

18 entries across 18 versions & 1 rubygems

Version Path
ruby-dnn-0.5.9 examples/mnist_example2.rb
ruby-dnn-0.5.8 examples/mnist_example2.rb
ruby-dnn-0.5.7 examples/mnist_example2.rb
ruby-dnn-0.5.6 examples/mnist_example2.rb
ruby-dnn-0.5.5 examples/mnist_example2.rb
ruby-dnn-0.5.4 examples/mnist_example2.rb
ruby-dnn-0.5.3 examples/mnist_example2.rb
ruby-dnn-0.5.2 examples/mnist_example2.rb
ruby-dnn-0.5.1 examples/mnist_example2.rb
ruby-dnn-0.5.0 examples/mnist_example2.rb
ruby-dnn-0.4.4 examples/mnist_example2.rb
ruby-dnn-0.4.3 examples/mnist_example2.rb
ruby-dnn-0.4.2 examples/mnist_example2.rb
ruby-dnn-0.4.1 examples/mnist_example2.rb
ruby-dnn-0.4.0 examples/mnist_example2.rb
ruby-dnn-0.3.2 examples/mnist_example2.rb
ruby-dnn-0.3.1 examples/mnist_example2.rb
ruby-dnn-0.3.0 examples/mnist_example2.rb