Sha256: e8d0b384fa93f2dcc1215ba92d02c67b9ddb1b5926a0546bea48fca21a9be5dc
Contents?: true
Size: 1.34 KB
Versions: 8
Compression:
Stored size: 1.34 KB
Contents
require "dnn" require "dnn/lib/cifar10" #require "numo/linalg/autoloader" include Numo include DNN::Layers include DNN::Activations include DNN::Optimizers Model = DNN::Model CIFAR10 = DNN::CIFAR10 x_train, y_train = CIFAR10.load_train x_test, y_test = CIFAR10.load_test x_train = SFloat.cast(x_train).reshape(x_train.shape[0], 32, 32, 3).transpose(0, 3, 2, 1) x_test = SFloat.cast(x_test).reshape(x_test.shape[0], 32, 32, 3).transpose(0, 3, 2, 1) x_train /= 255 x_test /= 255 y_train = DNN::Util.to_categorical(y_train, 10) y_test = DNN::Util.to_categorical(y_test, 10) model = Model.new model << InputLayer.new([3, 32, 32]) model << Conv2D.new(16, 5, 5) model << BatchNormalization.new model << ReLU.new model << Conv2D.new(16, 5, 5) model << BatchNormalization.new model << ReLU.new model << MaxPool2D.new(2, 2) model << Conv2D.new(32, 5, 5) model << BatchNormalization.new model << ReLU.new model << Conv2D.new(32, 5, 5) model << BatchNormalization.new model << ReLU.new model << Flatten.new model << Dense.new(512) model << BatchNormalization.new model << ReLU.new model << Dropout.new(0.5) model << Dense.new(10) model << SoftmaxWithLoss.new model.compile(Adam.new) model.train(x_train, y_train, 20, batch_size: 100) do model.test(x_test, y_test) end model.save("trained_cifar10.marshal")
Version data entries
8 entries across 8 versions & 1 rubygems