# encoding: utf-8
# graphics.rb : Implements PDF drawing primitives
#
# Copyright April 2008, Gregory Brown. All Rights Reserved.
#
# This is free software. Please see the LICENSE and COPYING files for details.
require "prawn/graphics/color"
require "prawn/graphics/dash"
require "prawn/graphics/cap_style"
require "prawn/graphics/join_style"
require "prawn/graphics/transparency"
require "prawn/graphics/transformation"
module Prawn
# Implements the drawing facilities for Prawn::Document.
# Use this to draw the most beautiful imaginable things.
#
# This file lifts and modifies several of PDF::Writer's graphics functions
# ruby-pdf.rubyforge.org
#
module Graphics
include Color
include Dash
include CapStyle
include JoinStyle
include Transparency
include Transformation
#######################################################################
# Low level drawing operations must map the point to absolute coords! #
#######################################################################
# Moves the drawing position to a given point. The point can be
# specified as a tuple or a flattened argument list
#
# pdf.move_to [100,50]
# pdf.move_to(100,50)
#
def move_to(*point)
x,y = map_to_absolute(point)
add_content("%.3f %.3f m" % [ x, y ])
end
# Draws a line from the current drawing position to the specified point.
# The destination may be described as a tuple or a flattened list:
#
# pdf.line_to [50,50]
# pdf.line_to(50,50)
#
def line_to(*point)
x,y = map_to_absolute(point)
add_content("%.3f %.3f l" % [ x, y ])
end
# Draws a Bezier curve from the current drawing position to the
# specified point, bounded by two additional points.
#
# pdf.curve_to [100,100], :bounds => [[90,90],[75,75]]
#
def curve_to(dest,options={})
options[:bounds] or raise Prawn::Errors::InvalidGraphicsPath,
"Bounding points for bezier curve must be specified "+
"as :bounds => [[x1,y1],[x2,y2]]"
curve_points = (options[:bounds] << dest).map { |e| map_to_absolute(e) }
add_content("%.3f %.3f %.3f %.3f %.3f %.3f c" %
curve_points.flatten )
end
# Draws a rectangle given point, width and
# height. The rectangle is bounded by its upper-left corner.
#
# pdf.rectangle [300,300], 100, 200
#
def rectangle(point,width,height)
x,y = map_to_absolute(point)
add_content("%.3f %.3f %.3f %.3f re" % [ x, y - height, width, height ])
end
# Draws a rounded rectangle given point, width and
# height and radius for the rounded corner. The rectangle
# is bounded by its upper-left corner.
#
# pdf.rounded_rectangle [300,300], 100, 200, 10
#
def rounded_rectangle(point,width,height,radius)
x, y = point
rounded_polygon(radius, point, [x + width, y], [x + width, y - height], [x, y - height])
end
###########################################################
# Higher level functions: May use relative coords #
###########################################################
# Sets line thickness to the width specified.
#
def line_width=(width)
@line_width = width
add_content("#{width} w")
end
# When called without an argument, returns the current line thickness.
# When called with an argument, sets the line thickness to the specified
# value (in PDF points)
#
# pdf.line_width #=> 1
# pdf.line_width(5)
# pdf.line_width #=> 5
#
def line_width(width=nil)
if width
self.line_width = width
else
(defined?(@line_width) && @line_width) || 1
end
end
# Draws a line from one point to another. Points may be specified as
# tuples or flattened argument list:
#
# pdf.line [100,100], [200,250]
# pdf.line(100,100,200,250)
#
def line(*points)
x0,y0,x1,y1 = points.flatten
move_to(x0, y0)
line_to(x1, y1)
end
# Draws a horizontal line from x1 to x2 at the
# current y position, or the position specified by the :at option.
#
# # draw a line from [25, 75] to [100, 75]
# horizontal_line 25, 100, :at => 75
#
def horizontal_line(x1,x2,options={})
if options[:at]
y1 = options[:at]
else
y1 = y - bounds.absolute_bottom
end
line(x1,y1,x2,y1)
end
# Draws a horizontal line from the left border to the right border of the
# bounding box at the current y position.
#
def horizontal_rule
horizontal_line(bounds.left, bounds.right)
end
# Draws a vertical line at the x cooordinate given by :at from y1 to y2.
#
# # draw a line from [25, 100] to [25, 300]
# vertical_line 100, 300, :at => 25
#
def vertical_line(y1,y2,params)
line(params[:at],y1,params[:at],y2)
end
# Draws a Bezier curve between two points, bounded by two additional
# points
#
# pdf.curve [50,100], [100,100], :bounds => [[90,90],[75,75]]
#
def curve(origin,dest, options={})
move_to(*origin)
curve_to(dest,options)
end
# This constant is used to approximate a symmetrical arc using a cubic
# Bezier curve.
#
KAPPA = 4.0 * ((Math.sqrt(2) - 1.0) / 3.0)
# Draws a circle of radius :radius with the centre-point at point
# as a complete subpath. The drawing point will be moved to the
# centre-point upon completion of the drawing the circle.
#
# pdf.circle_at [100,100], :radius => 25
#
def circle_at(point, options)
x,y = point
ellipse_at [x, y], options[:radius]
end
# Draws an ellipse of +x+ radius r1 and +y+ radius r2
# with the centre-point at point as a complete subpath. The
# drawing point will be moved to the centre-point upon completion of the
# drawing the ellipse.
#
# # draws an ellipse with x-radius 25 and y-radius 50
# pdf.ellipse_at [100,100], 25, 50
#
def ellipse_at(point, r1, r2 = r1)
x, y = point
l1 = r1 * KAPPA
l2 = r2 * KAPPA
move_to(x + r1, y)
# Upper right hand corner
curve_to [x, y + r2],
:bounds => [[x + r1, y + l1], [x + l2, y + r2]]
# Upper left hand corner
curve_to [x - r1, y],
:bounds => [[x - l2, y + r2], [x - r1, y + l1]]
# Lower left hand corner
curve_to [x, y - r2],
:bounds => [[x - r1, y - l1], [x - l2, y - r2]]
# Lower right hand corner
curve_to [x + r1, y],
:bounds => [[x + l2, y - r2], [x + r1, y - l1]]
move_to(x, y)
end
# Draws a polygon from the specified points.
#
# # draws a snazzy triangle
# pdf.polygon [100,100], [100,200], [200,200]
#
def polygon(*points)
move_to points[0]
(points[1..-1] << points[0]).each do |point|
line_to(*point)
end
# close the path
add_content "h"
end
# Draws a rounded polygon from specified points using the radius to define bezier curves
#
# # draws a rounded filled in polygon
# pdf.fill_and_stroke_rounded_polygon(10, [100, 250], [200, 300], [300, 250],
# [300, 150], [200, 100], [100, 150])
def rounded_polygon(radius, *points)
move_to point_on_line(radius, points[1], points[0])
sides = points.size
points << points[0] << points[1]
(sides).times do |i|
rounded_vertex(radius, points[i], points[i + 1], points[i + 2])
end
# close the path
add_content "h"
end
# Creates a rounded vertex for a line segment used for building a rounded polygon
# requires a radius to define bezier curve and three points. The first two points define
# the line segment and the third point helps define the curve for the vertex.
def rounded_vertex(radius, *points)
x0,y0,x1,y1,x2,y2 = points.flatten
radial_point_1 = point_on_line(radius, points[0], points[1])
bezier_point_1 = point_on_line((radius - radius*KAPPA), points[0], points[1] )
radial_point_2 = point_on_line(radius, points[2], points[1])
bezier_point_2 = point_on_line((radius - radius*KAPPA), points[2], points[1])
line_to(radial_point_1)
curve_to(radial_point_2, :bounds => [bezier_point_1, bezier_point_2])
end
# Strokes and closes the current path. See Graphic::Color for color details
#
def stroke
yield if block_given?
add_content "S"
end
# Draws and strokes a rectangle represented by the current bounding box
#
def stroke_bounds
stroke_rectangle bounds.top_left, bounds.width, bounds.height
end
# Fills and closes the current path. See Graphic::Color for color details
#
def fill
yield if block_given?
add_content "f"
end
# Fills, strokes, and closes the current path. See Graphic::Color for color details
#
def fill_and_stroke
yield if block_given?
add_content "b"
end
private
def map_to_absolute(*point)
x,y = point.flatten
[@bounding_box.absolute_left + x, @bounding_box.absolute_bottom + y]
end
def map_to_absolute!(point)
point.replace(map_to_absolute(point))
end
def degree_to_rad(angle)
angle * Math::PI / 180
end
# Returns the coordinates for a point on a line that is a given distance away from the second
# point defining the line segement
def point_on_line(distance_from_end, *points)
x0,y0,x1,y1 = points.flatten
length = Math.sqrt((x1 - x0)**2 + (y1 - y0)**2)
p = (length - distance_from_end) / length
xr = x0 + p*(x1 - x0)
yr = y0 + p*(y1 - y0)
[xr, yr]
end
end
end