# mirrors _tensor_str.py module Torch module Inspector PRINT_OPTS = { precision: 4, threshold: 1000, edgeitems: 3, linewidth: 80, sci_mode: nil } class Formatter def initialize(tensor) @floating_dtype = tensor.floating_point? @complex_dtype = tensor.complex? @int_mode = true @sci_mode = false @max_width = 1 tensor_view = Torch.no_grad { tensor.reshape(-1) } if !@floating_dtype tensor_view.each do |value| value_str = value.item.to_s @max_width = [@max_width, value_str.length].max end else nonzero_finite_vals = Torch.masked_select(tensor_view, Torch.isfinite(tensor_view) & tensor_view.ne(0)) # no valid number, do nothing return if nonzero_finite_vals.numel == 0 # Convert to double for easy calculation. HalfTensor overflows with 1e8, and there's no div() on CPU. nonzero_finite_abs = nonzero_finite_vals.abs.double nonzero_finite_min = nonzero_finite_abs.min.double nonzero_finite_max = nonzero_finite_abs.max.double nonzero_finite_vals.each do |value| if value.item != value.item.ceil @int_mode = false break end end if @int_mode # in int_mode for floats, all numbers are integers, and we append a decimal to nonfinites # to indicate that the tensor is of floating type. add 1 to the len to account for this. if nonzero_finite_max / nonzero_finite_min > 1000.0 || nonzero_finite_max > 1.0e8 @sci_mode = true nonzero_finite_vals.each do |value| value_str = "%.#{PRINT_OPTS[:precision]}e" % value.item @max_width = [@max_width, value_str.length].max end else nonzero_finite_vals.each do |value| value_str = "%.0f" % value.item @max_width = [@max_width, value_str.length + 1].max end end else # Check if scientific representation should be used. if nonzero_finite_max / nonzero_finite_min > 1000.0 || nonzero_finite_max > 1.0e8 || nonzero_finite_min < 1.0e-4 @sci_mode = true nonzero_finite_vals.each do |value| value_str = "%.#{PRINT_OPTS[:precision]}e" % value.item @max_width = [@max_width, value_str.length].max end else nonzero_finite_vals.each do |value| value_str = "%.#{PRINT_OPTS[:precision]}f" % value.item @max_width = [@max_width, value_str.length].max end end end end @sci_mode = PRINT_OPTS[:sci_mode] unless PRINT_OPTS[:sci_mode].nil? end def width @max_width end def format(value) value = value.item if @floating_dtype if @sci_mode ret = "%#{@max_width}.#{PRINT_OPTS[:precision]}e" % value elsif @int_mode ret = String.new("%.0f" % value) unless value.infinite? || value.nan? ret += "." end else ret = "%.#{PRINT_OPTS[:precision]}f" % value end elsif @complex_dtype p = PRINT_OPTS[:precision] raise NotImplementedYet else ret = value.to_s end # Ruby throws error when negative, Python doesn't " " * [@max_width - ret.size, 0].max + ret end end def inspect Torch.no_grad do str_intern(self) end rescue => e # prevent stack error puts e.backtrace.join("\n") "Error inspecting tensor: #{e.inspect}" end private # TODO update def str_intern(slf) prefix = "tensor(" indent = prefix.length suffixes = [] has_default_dtype = [:float32, :int64, :bool].include?(slf.dtype) if slf.numel == 0 && !slf.sparse? # Explicitly print the shape if it is not (0,), to match NumPy behavior if slf.dim != 1 suffixes << "size: #{shape.inspect}" end # In an empty tensor, there are no elements to infer if the dtype # should be int64, so it must be shown explicitly. if slf.dtype != :int64 suffixes << "dtype: #{slf.dtype.inspect}" end tensor_str = "[]" else if !has_default_dtype suffixes << "dtype: #{slf.dtype.inspect}" end if slf.layout != :strided tensor_str = tensor_str(slf.to_dense, indent) else tensor_str = tensor_str(slf, indent) end end if slf.layout != :strided suffixes << "layout: #{slf.layout.inspect}" end # TODO show grad_fn if slf.requires_grad? suffixes << "requires_grad: true" end add_suffixes(prefix + tensor_str, suffixes, indent, slf.sparse?) end def add_suffixes(tensor_str, suffixes, indent, force_newline) tensor_strs = [tensor_str] # rfind in Python returns -1 when not found last_line_len = tensor_str.length - (tensor_str.rindex("\n") || -1) + 1 suffixes.each do |suffix| suffix_len = suffix.length if force_newline || last_line_len + suffix_len + 2 > PRINT_OPTS[:linewidth] tensor_strs << ",\n" + " " * indent + suffix last_line_len = indent + suffix_len force_newline = false else tensor_strs.append(", " + suffix) last_line_len += suffix_len + 2 end end tensor_strs.append(")") tensor_strs.join("") end def tensor_str(slf, indent) return "[]" if slf.numel == 0 summarize = slf.numel > PRINT_OPTS[:threshold] if slf.dtype == :float16 || slf.dtype == :bfloat16 slf = slf.float end formatter = Formatter.new(summarize ? summarized_data(slf) : slf) tensor_str_with_formatter(slf, indent, formatter, summarize) end def summarized_data(slf) edgeitems = PRINT_OPTS[:edgeitems] dim = slf.dim if dim == 0 slf elsif dim == 1 if size(0) > 2 * edgeitems Torch.cat([slf[0...edgeitems], slf[-edgeitems..-1]]) else slf end elsif slf.size(0) > 2 * edgeitems start = edgeitems.times.map { |i| slf[i] } finish = (slf.length - edgeitems).upto(slf.length - 1).map { |i| slf[i] } Torch.stack((start + finish).map { |x| summarized_data(x) }) else Torch.stack(slf.map { |x| summarized_data(x) }) end end def tensor_str_with_formatter(slf, indent, formatter, summarize) edgeitems = PRINT_OPTS[:edgeitems] dim = slf.dim return scalar_str(slf, formatter) if dim == 0 return vector_str(slf, indent, formatter, summarize) if dim == 1 if summarize && slf.size(0) > 2 * edgeitems slices = ( [edgeitems.times.map { |i| tensor_str_with_formatter(slf[i], indent + 1, formatter, summarize) }] + ["..."] + [((slf.length - edgeitems)...slf.length).map { |i| tensor_str_with_formatter(slf[i], indent + 1, formatter, summarize) }] ) else slices = slf.size(0).times.map { |i| tensor_str_with_formatter(slf[i], indent + 1, formatter, summarize) } end tensor_str = slices.join("," + "\n" * (dim - 1) + " " * (indent + 1)) "[" + tensor_str + "]" end def scalar_str(slf, formatter) formatter.format(slf) end def vector_str(slf, indent, formatter, summarize) # length includes spaces and comma between elements element_length = formatter.width + 2 elements_per_line = [1, ((PRINT_OPTS[:linewidth] - indent) / element_length.to_f).floor.to_i].max char_per_line = element_length * elements_per_line if summarize && slf.size(0) > 2 * PRINT_OPTS[:edgeitems] data = ( [slf[0...PRINT_OPTS[:edgeitems]].map { |val| formatter.format(val) }] + [" ..."] + [slf[-PRINT_OPTS[:edgeitems]..-1].map { |val| formatter.format(val) }] ) else data = slf.map { |val| formatter.format(val) } end data_lines = (0...data.length).step(elements_per_line).map { |i| data[i...(i + elements_per_line)] } lines = data_lines.map { |line| line.join(", ") } "[" + lines.join("," + "\n" + " " * (indent + 1)) + "]" end end end