import "../behavior/drag"; import "../core/identity"; import "../core/rebind"; import "../event/event"; import "../event/dispatch"; import "../event/timer"; import "../geom/quadtree"; import "layout"; // A rudimentary force layout using Gauss-Seidel. d3.layout.force = function() { var force = {}, event = d3.dispatch("start", "tick", "end"), size = [1, 1], drag, alpha, friction = .9, linkDistance = d3_layout_forceLinkDistance, linkStrength = d3_layout_forceLinkStrength, charge = -30, gravity = .1, theta = .8, nodes = [], links = [], distances, strengths, charges; function repulse(node) { return function(quad, x1, _, x2) { if (quad.point !== node) { var dx = quad.cx - node.x, dy = quad.cy - node.y, dn = 1 / Math.sqrt(dx * dx + dy * dy); /* Barnes-Hut criterion. */ if ((x2 - x1) * dn < theta) { var k = quad.charge * dn * dn; node.px -= dx * k; node.py -= dy * k; return true; } if (quad.point && isFinite(dn)) { var k = quad.pointCharge * dn * dn; node.px -= dx * k; node.py -= dy * k; } } return !quad.charge; }; } force.tick = function() { // simulated annealing, basically if ((alpha *= .99) < .005) { event.end({type: "end", alpha: alpha = 0}); return true; } var n = nodes.length, m = links.length, q, i, // current index o, // current object s, // current source t, // current target l, // current distance k, // current force x, // x-distance y; // y-distance // gauss-seidel relaxation for links for (i = 0; i < m; ++i) { o = links[i]; s = o.source; t = o.target; x = t.x - s.x; y = t.y - s.y; if (l = (x * x + y * y)) { l = alpha * strengths[i] * ((l = Math.sqrt(l)) - distances[i]) / l; x *= l; y *= l; t.x -= x * (k = s.weight / (t.weight + s.weight)); t.y -= y * k; s.x += x * (k = 1 - k); s.y += y * k; } } // apply gravity forces if (k = alpha * gravity) { x = size[0] / 2; y = size[1] / 2; i = -1; if (k) while (++i < n) { o = nodes[i]; o.x += (x - o.x) * k; o.y += (y - o.y) * k; } } // compute quadtree center of mass and apply charge forces if (charge) { d3_layout_forceAccumulate(q = d3.geom.quadtree(nodes), alpha, charges); i = -1; while (++i < n) { if (!(o = nodes[i]).fixed) { q.visit(repulse(o)); } } } // position verlet integration i = -1; while (++i < n) { o = nodes[i]; if (o.fixed) { o.x = o.px; o.y = o.py; } else { o.x -= (o.px - (o.px = o.x)) * friction; o.y -= (o.py - (o.py = o.y)) * friction; } } event.tick({type: "tick", alpha: alpha}); }; force.nodes = function(x) { if (!arguments.length) return nodes; nodes = x; return force; }; force.links = function(x) { if (!arguments.length) return links; links = x; return force; }; force.size = function(x) { if (!arguments.length) return size; size = x; return force; }; force.linkDistance = function(x) { if (!arguments.length) return linkDistance; linkDistance = typeof x === "function" ? x : +x; return force; }; // For backwards-compatibility. force.distance = force.linkDistance; force.linkStrength = function(x) { if (!arguments.length) return linkStrength; linkStrength = typeof x === "function" ? x : +x; return force; }; force.friction = function(x) { if (!arguments.length) return friction; friction = +x; return force; }; force.charge = function(x) { if (!arguments.length) return charge; charge = typeof x === "function" ? x : +x; return force; }; force.gravity = function(x) { if (!arguments.length) return gravity; gravity = +x; return force; }; force.theta = function(x) { if (!arguments.length) return theta; theta = +x; return force; }; force.alpha = function(x) { if (!arguments.length) return alpha; x = +x; if (alpha) { // if we're already running if (x > 0) alpha = x; // we might keep it hot else alpha = 0; // or, next tick will dispatch "end" } else if (x > 0) { // otherwise, fire it up! event.start({type: "start", alpha: alpha = x}); d3.timer(force.tick); } return force; }; force.start = function() { var i, j, n = nodes.length, m = links.length, w = size[0], h = size[1], neighbors, o; for (i = 0; i < n; ++i) { (o = nodes[i]).index = i; o.weight = 0; } for (i = 0; i < m; ++i) { o = links[i]; if (typeof o.source == "number") o.source = nodes[o.source]; if (typeof o.target == "number") o.target = nodes[o.target]; ++o.source.weight; ++o.target.weight; } for (i = 0; i < n; ++i) { o = nodes[i]; if (isNaN(o.x)) o.x = position("x", w); if (isNaN(o.y)) o.y = position("y", h); if (isNaN(o.px)) o.px = o.x; if (isNaN(o.py)) o.py = o.y; } distances = []; if (typeof linkDistance === "function") for (i = 0; i < m; ++i) distances[i] = +linkDistance.call(this, links[i], i); else for (i = 0; i < m; ++i) distances[i] = linkDistance; strengths = []; if (typeof linkStrength === "function") for (i = 0; i < m; ++i) strengths[i] = +linkStrength.call(this, links[i], i); else for (i = 0; i < m; ++i) strengths[i] = linkStrength; charges = []; if (typeof charge === "function") for (i = 0; i < n; ++i) charges[i] = +charge.call(this, nodes[i], i); else for (i = 0; i < n; ++i) charges[i] = charge; // initialize node position based on first neighbor function position(dimension, size) { var neighbors = neighbor(i), j = -1, m = neighbors.length, x; while (++j < m) if (!isNaN(x = neighbors[j][dimension])) return x; return Math.random() * size; } // initialize neighbors lazily function neighbor() { if (!neighbors) { neighbors = []; for (j = 0; j < n; ++j) { neighbors[j] = []; } for (j = 0; j < m; ++j) { var o = links[j]; neighbors[o.source.index].push(o.target); neighbors[o.target.index].push(o.source); } } return neighbors[i]; } return force.resume(); }; force.resume = function() { return force.alpha(.1); }; force.stop = function() { return force.alpha(0); }; // use `node.call(force.drag)` to make nodes draggable force.drag = function() { if (!drag) drag = d3.behavior.drag() .origin(d3_identity) .on("dragstart.force", d3_layout_forceDragstart) .on("drag.force", dragmove) .on("dragend.force", d3_layout_forceDragend); if (!arguments.length) return drag; this.on("mouseover.force", d3_layout_forceMouseover) .on("mouseout.force", d3_layout_forceMouseout) .call(drag); }; function dragmove(d) { d.px = d3.event.x, d.py = d3.event.y; force.resume(); // restart annealing } return d3.rebind(force, event, "on"); }; // The fixed property has three bits: // Bit 1 can be set externally (e.g., d.fixed = true) and show persist. // Bit 2 stores the dragging state, from mousedown to mouseup. // Bit 3 stores the hover state, from mouseover to mouseout. // Dragend is a special case: it also clears the hover state. function d3_layout_forceDragstart(d) { d.fixed |= 2; // set bit 2 } function d3_layout_forceDragend(d) { d.fixed &= ~6; // unset bits 2 and 3 } function d3_layout_forceMouseover(d) { d.fixed |= 4; // set bit 3 d.px = d.x, d.py = d.y; // set velocity to zero } function d3_layout_forceMouseout(d) { d.fixed &= ~4; // unset bit 3 } function d3_layout_forceAccumulate(quad, alpha, charges) { var cx = 0, cy = 0; quad.charge = 0; if (!quad.leaf) { var nodes = quad.nodes, n = nodes.length, i = -1, c; while (++i < n) { c = nodes[i]; if (c == null) continue; d3_layout_forceAccumulate(c, alpha, charges); quad.charge += c.charge; cx += c.charge * c.cx; cy += c.charge * c.cy; } } if (quad.point) { // jitter internal nodes that are coincident if (!quad.leaf) { quad.point.x += Math.random() - .5; quad.point.y += Math.random() - .5; } var k = alpha * charges[quad.point.index]; quad.charge += quad.pointCharge = k; cx += k * quad.point.x; cy += k * quad.point.y; } quad.cx = cx / quad.charge; quad.cy = cy / quad.charge; } var d3_layout_forceLinkDistance = 20, d3_layout_forceLinkStrength = 1;