module DNN module Layers #This module is used for convolution. module Conv2DModule private def im2col(img, out_h, out_w, fil_h, fil_w, strides) bsize = img.shape[0] ch = img.shape[3] col = SFloat.zeros(bsize, ch, fil_h, fil_w, out_h, out_w) img = img.transpose(0, 3, 1, 2) (0...fil_h).each do |i| i_range = (i...(i + strides[0] * out_h)).step(strides[0]).to_a (0...fil_w).each do |j| j_range = (j...(j + strides[1] * out_w)).step(strides[1]).to_a col[true, true, i, j, true, true] = img[true, true, i_range, j_range] end end col.transpose(0, 4, 5, 2, 3, 1).reshape(bsize * out_h * out_w, fil_h * fil_w * ch) end def col2im(col, img_shape, out_h, out_w, fil_h, fil_w, strides) bsize, img_h, img_w, ch = img_shape col = col.reshape(bsize, out_h, out_w, fil_h, fil_w, ch).transpose(0, 5, 3, 4, 1, 2) img = SFloat.zeros(bsize, ch, img_h, img_w) (0...fil_h).each do |i| i_range = (i...(i + strides[0] * out_h)).step(strides[0]).to_a (0...fil_w).each do |j| j_range = (j...(j + strides[1] * out_w)).step(strides[1]).to_a img[true, true, i_range, j_range] += col[true, true, i, j, true, true] end end img.transpose(0, 2, 3, 1) end def padding(img, pad) bsize, img_h, img_w, ch = img.shape img2 = SFloat.zeros(bsize, img_h + pad[0], img_w + pad[1], ch) i_begin = pad[0] / 2 i_end = i_begin + img_h j_begin = pad[1] / 2 j_end = j_begin + img_w img2[true, i_begin...i_end, j_begin...j_end, true] = img img2 end def back_padding(img, pad) i_begin = pad[0] / 2 i_end = img.shape[1] - (pad[0] / 2.0).round j_begin = pad[1] / 2 j_end = img.shape[2] - (pad[1] / 2.0).round img[true, i_begin...i_end, j_begin...j_end, true] end def out_size(prev_h, prev_w, fil_h, fil_w, strides) out_h = (prev_h - fil_h) / strides[0] + 1 out_w = (prev_w - fil_w) / strides[1] + 1 [out_h, out_w] end end class Conv2D < HasParamLayer include Initializers include Conv2DModule attr_reader :num_filters attr_reader :filter_size attr_reader :strides attr_reader :weight_decay def initialize(num_filters, filter_size, weight_initializer: nil, bias_initializer: nil, strides: 1, padding: false, weight_decay: 0) super() @num_filters = num_filters @filter_size = filter_size.is_a?(Integer) ? [filter_size, filter_size] : filter_size @weight_initializer = (weight_initializer || RandomNormal.new) @bias_initializer = (bias_initializer || Zeros.new) @strides = strides.is_a?(Integer) ? [strides, strides] : strides @padding = padding @weight_decay = weight_decay end def self.load_hash(hash) Conv2D.new(hash[:num_filters], hash[:filter_size], weight_initializer: Util.load_hash(hash[:weight_initializer]), bias_initializer: Util.load_hash(hash[:bias_initializer]), strides: hash[:strides], padding: hash[:padding], weight_decay: hash[:weight_decay]) end def build(model) super prev_h, prev_w = prev_layer.shape[0..1] @out_size = out_size(prev_h, prev_w, *@filter_size, @strides) out_w, out_h = @out_size if @padding @pad = [prev_h - out_h, prev_w - out_w] @out_size = [prev_h, prev_w] end end def forward(x) x = padding(x, @pad) if @padding @x_shape = x.shape @col = im2col(x, *@out_size, *@filter_size, @strides) out = @col.dot(@params[:weight]) out.reshape(x.shape[0], *@out_size, out.shape[3]) end def backward(dout) dout = dout.reshape(dout.shape[0..2].reduce(:*), dout.shape[3]) @grads[:weight] = @col.transpose.dot(dout) if @weight_decay > 0 dridge = @weight_decay * @params[:weight] @grads[:weight] += dridge end @grads[:bias] = dout.sum(0) dcol = dout.dot(@params[:weight].transpose) dx = col2im(dcol, @x_shape, *@out_size, *@filter_size, @strides) @padding ? back_padding(dx, @pad) : dx end def shape [*@out_size, @num_filters] end def to_hash super({num_filters: @num_filters, filter_size: @filter_size, weight_initializer: @weight_initializer.to_hash, bias_initializer: @bias_initializer.to_hash, strides: @strides, padding: @padding, weight_decay: @weight_decay}) end private def init_params num_prev_filter = prev_layer.shape[2] @params[:weight] = SFloat.new(num_prev_filter * @filter_size.reduce(:*), @num_filters) @params[:bias] = SFloat.new(@num_filters) @weight_initializer.init_param(self, :weight) @bias_initializer.init_param(self, :bias) end end class MaxPool2D < Layer include Conv2DModule attr_reader :pool_size attr_reader :strides def self.load_hash(hash) MaxPool2D.new(hash[:pool_size], strides: hash[:strides], padding: hash[:padding]) end def initialize(pool_size, strides: nil, padding: false) super() @pool_size = pool_size.is_a?(Integer) ? [pool_size, pool_size] : pool_size @strides = if strides strides.is_a?(Integer) ? [strides, strides] : strides else @pool_size.clone end @padding = padding end def build(model) super prev_w, prev_h = prev_layer.shape[0..1] @num_channel = prev_layer.shape[2] @out_size = out_size(prev_h, prev_w, *@pool_size, @strides) out_w, out_h = @out_size if @padding @pad = [prev_h - out_h, prev_w - out_w] @out_size = [prev_h, prev_w] end end def forward(x) x = padding(x, @pad) if @padding @x_shape = x.shape col = im2col(x, *@out_size, *@pool_size, @strides) col = col.reshape(x.shape[0] * @out_size.reduce(:*) * x.shape[3], @pool_size.reduce(:*)) @max_index = col.max_index(1) col.max(1).reshape(x.shape[0], *@out_size, x.shape[3]) end def backward(dout) dmax = SFloat.zeros(dout.size * @pool_size.reduce(:*)) dmax[@max_index] = dout.flatten dcol = dmax.reshape(dout.shape[0..2].reduce(:*), dout.shape[3] * @pool_size.reduce(:*)) dx = col2im(dcol, @x_shape, *@out_size, *@pool_size, @strides) @padding ? back_padding(dx, @pad) : dx end def shape [*@out_size, @num_channel] end def to_hash super({pool_width: @pool_width, pool_height: @pool_height, strides: @strides, padding: @padding}) end end class UnPool2D < Layer attr_reader :unpool_size def initialize(unpool_size) super() @unpool_size = unpool_size.is_a?(Integer) ? [unpool_size, unpool_size] : unpool_size end def self.load_hash(hash) UnPool2D.new(hash[:unpool_size]) end def build(model) super prev_h, prev_w = prev_layer.shape[0..1] unpool_h, unpool_w = @unpool_size out_h = prev_h * unpool_h out_w = prev_w * unpool_w @out_size = [out_h, out_w] @num_channel = prev_layer.shape[2] end def forward(x) @x_shape = x.shape unpool_h, unpool_w = @unpool_size x2 = SFloat.zeros(x.shape[0], x.shape[1], unpool_h, x.shape[2], unpool_w, @num_channel) x2[true, true, 0, true, 0, true] = x x2.reshape(x.shape[0], *@out_size, x.shape[3]) end def backward(dout) unpool_h, unpool_w = @unpool_size dout = dout.reshape(dout.shape[0], @x_shape[0], unpool_h, @x_shape[1], unpool_w, @num_channel) dout[true, true, 0, true, 0, true].clone end def shape [@out_width, @out_height, @num_channel] end def to_hash super({unpool_size: @unpool_size}) end end end end