/* ----------------------------------------------------------------------- ffi.c - Copyright (C) 2013 IBM Copyright (C) 2011 Anthony Green Copyright (C) 2011 Kyle Moffett Copyright (C) 2008 Red Hat, Inc Copyright (C) 2007, 2008 Free Software Foundation, Inc Copyright (c) 1998 Geoffrey Keating PowerPC Foreign Function Interface Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------- */ #include "ffi.h" #include "ffi_common.h" #include "ffi_powerpc.h" #if HAVE_LONG_DOUBLE_VARIANT /* Adjust ffi_type_longdouble. */ void FFI_HIDDEN ffi_prep_types (ffi_abi abi) { # if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE # ifdef POWERPC64 ffi_prep_types_linux64 (abi); # else ffi_prep_types_sysv (abi); # endif # endif } #endif /* Perform machine dependent cif processing */ ffi_status FFI_HIDDEN ffi_prep_cif_machdep (ffi_cif *cif) { #ifdef POWERPC64 return ffi_prep_cif_linux64 (cif); #else return ffi_prep_cif_sysv (cif); #endif } ffi_status FFI_HIDDEN ffi_prep_cif_machdep_var (ffi_cif *cif, unsigned int nfixedargs MAYBE_UNUSED, unsigned int ntotalargs MAYBE_UNUSED) { #ifdef POWERPC64 return ffi_prep_cif_linux64_var (cif, nfixedargs, ntotalargs); #else return ffi_prep_cif_sysv (cif); #endif } static void ffi_call_int (ffi_cif *cif, void (*fn) (void), void *rvalue, void **avalue, void *closure) { /* The final SYSV ABI says that structures smaller or equal 8 bytes are returned in r3/r4. A draft ABI used by linux instead returns them in memory. We bounce-buffer SYSV small struct return values so that sysv.S can write r3 and r4 to memory without worrying about struct size. For ELFv2 ABI, use a bounce buffer for homogeneous structs too, for similar reasons. This bounce buffer must be aligned to 16 bytes for use with homogeneous structs of vectors (float128). */ float128 smst_buffer[8]; extended_cif ecif; ecif.cif = cif; ecif.avalue = avalue; ecif.rvalue = rvalue; if ((cif->flags & FLAG_RETURNS_SMST) != 0) ecif.rvalue = smst_buffer; /* Ensure that we have a valid struct return value. FIXME: Isn't this just papering over a user problem? */ else if (!rvalue && cif->rtype->type == FFI_TYPE_STRUCT) ecif.rvalue = alloca (cif->rtype->size); #ifdef POWERPC64 ffi_call_LINUX64 (&ecif, fn, ecif.rvalue, cif->flags, closure, -(long) cif->bytes); #else ffi_call_SYSV (&ecif, fn, ecif.rvalue, cif->flags, closure, -cif->bytes); #endif /* Check for a bounce-buffered return value */ if (rvalue && ecif.rvalue == smst_buffer) { unsigned int rsize = cif->rtype->size; #ifndef __LITTLE_ENDIAN__ /* The SYSV ABI returns a structure of up to 4 bytes in size left-padded in r3. */ # ifndef POWERPC64 if (rsize <= 4) memcpy (rvalue, (char *) smst_buffer + 4 - rsize, rsize); else # endif /* The SYSV ABI returns a structure of up to 8 bytes in size left-padded in r3/r4, and the ELFv2 ABI similarly returns a structure of up to 8 bytes in size left-padded in r3. But note that a structure of a single float is not paddded. */ if (rsize <= 8 && (cif->flags & FLAG_RETURNS_FP) == 0) memcpy (rvalue, (char *) smst_buffer + 8 - rsize, rsize); else #endif memcpy (rvalue, smst_buffer, rsize); } } void ffi_call (ffi_cif *cif, void (*fn) (void), void *rvalue, void **avalue) { ffi_call_int (cif, fn, rvalue, avalue, NULL); } void ffi_call_go (ffi_cif *cif, void (*fn) (void), void *rvalue, void **avalue, void *closure) { ffi_call_int (cif, fn, rvalue, avalue, closure); } ffi_status ffi_prep_closure_loc (ffi_closure *closure, ffi_cif *cif, void (*fun) (ffi_cif *, void *, void **, void *), void *user_data, void *codeloc) { #ifdef POWERPC64 return ffi_prep_closure_loc_linux64 (closure, cif, fun, user_data, codeloc); #else return ffi_prep_closure_loc_sysv (closure, cif, fun, user_data, codeloc); #endif } ffi_status ffi_prep_go_closure (ffi_go_closure *closure, ffi_cif *cif, void (*fun) (ffi_cif *, void *, void **, void *)) { #ifdef POWERPC64 closure->tramp = ffi_go_closure_linux64; #else closure->tramp = ffi_go_closure_sysv; #endif closure->cif = cif; closure->fun = fun; return FFI_OK; }