require 'rubygems' require 'gecoder' solution = Gecode.solve do # A helper to make the linear equation a bit tidier. Takes a number of # variables and computes the linear combination as if the variable # were digits in a base 10 number. E.g. x,y,z becomes # 100*x + 10*y + z . def equation_row(*variables) variables.inject{ |result, variable| variable + result*10 } end # Set up the variables. # Let "letters" be an array of 8 integer variables with domain 0..9. # The elements represents the letters s, e, n, d, m, o, r and y. letters_is_an int_var_array(8, 0..9) s,e,n,d,m,o,r,y = letters # Set up the constraints. # The equation must hold. (equation_row(s, e, n, d) + equation_row(m, o, r, e)).must == equation_row(m, o, n, e, y) # The initial letters may not be 0. s.must_not == 0 m.must_not == 0 # All letters must be assigned different digits. letters.must_be.distinct # Tell Gecode what variables we want to know the values of. branch_on letters, :variable => :smallest_size, :value => :min end puts 's e n d m o r y' puts solution.letters.values.join(' ')