/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* * Main authors: * Christian Schulte * * Copyright: * Christian Schulte, 2003 * * Last modified: * $Date: 2010-07-22 19:59:14 +1000 (Thu, 22 Jul 2010) $ by $Author: schulte $ * $Revision: 11248 $ * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #ifndef __GECODE_SEARCH_PARALLEL_PATH_HH__ #define __GECODE_SEARCH_PARALLEL_PATH_HH__ #include namespace Gecode { namespace Search { namespace Parallel { /** * \brief Depth-first path (stack of edges) supporting recomputation * * Maintains the invariant that it contains * the path of the node being currently explored. This * is required to support recomputation, of course. * * The path supports adaptive recomputation controlled * by the value of a_d: only if the recomputation * distance is at least this large, an additional * clone is created. * */ class Path { public: /// %Search tree edge for recomputation class Edge { protected: /// Space corresponding to this edge (might be NULL) Space* _space; /// Current alternative unsigned int _alt; /// Number of alternatives left unsigned int _alt_max; /// Choice const Choice* _choice; public: /// Default constructor Edge(void); /// Edge for space \a s with clone \a c (possibly NULL) Edge(Space* s, Space* c); /// Return space for edge Space* space(void) const; /// Set space to \a s void space(Space* s); /// Return choice const Choice* choice(void) const; /// Return number for alternatives unsigned int alt(void) const; /// Test whether current alternative is rightmost bool rightmost(void) const; /// Test whether there is an alternative that can be stolen bool work(void) const; /// Move to next alternative void next(void); /// Steal rightmost alternative and return its number unsigned int steal(void); /// Free memory for edge void dispose(void); }; protected: /// Stack to store edge information Support::DynamicStack ds; /// Number of edges that have work for stealing unsigned int n_work; public: /// Initialize Path(void); /// Push space \a c (a clone of \a s or NULL) const Choice* push(Worker& stat, Space* s, Space* c); /// Generate path for next node and return whether a next node exists bool next(Worker& s); /// Provide access to topmost edge Edge& top(void) const; /// Test whether path is empty bool empty(void) const; /// Return position on stack of last copy int lc(void) const; /// Unwind the stack up to position \a l (after failure) void unwind(int l); /// Commit space \a s as described by stack entry at position \a i void commit(Space* s, int i) const; /// Recompute space according to path Space* recompute(unsigned int& d, unsigned int a_d, Worker& s); /// Recompute space according to path Space* recompute(unsigned int& d, unsigned int a_d, Worker& s, const Space* best, int& mark); /// Return number of entries on stack int entries(void) const; /// Return size used size_t size(void) const; /// Reset stack void reset(void); /// Make a quick check whether stealing might be feasible bool steal(void) const; /// Steal work at depth \a d Space* steal(Worker& stat, unsigned long int& d); }; /* * Edge for recomputation * */ forceinline Path::Edge::Edge(void) {} forceinline Path::Edge::Edge(Space* s, Space* c) : _space(c), _alt(0), _choice(s->choice()) { _alt_max = _choice->alternatives()-1; } forceinline Space* Path::Edge::space(void) const { return _space; } forceinline void Path::Edge::space(Space* s) { _space = s; } forceinline unsigned int Path::Edge::alt(void) const { return _alt; } forceinline bool Path::Edge::rightmost(void) const { return _alt == _alt_max; } forceinline bool Path::Edge::work(void) const { return _alt != _alt_max; } forceinline void Path::Edge::next(void) { _alt++; } forceinline unsigned int Path::Edge::steal(void) { assert(work()); return _alt_max--; } forceinline const Choice* Path::Edge::choice(void) const { return _choice; } forceinline void Path::Edge::dispose(void) { delete _space; delete _choice; } /* * Depth-first stack with recomputation * */ forceinline Path::Path(void) : ds(heap), n_work(0) {} forceinline const Choice* Path::push(Worker& stat, Space* s, Space* c) { Edge sn(s,c); if (sn.work()) n_work++; ds.push(sn); stat.stack_depth(static_cast(ds.entries())); return sn.choice(); } forceinline bool Path::next(Worker& stat) { while (!ds.empty()) if (ds.top().rightmost()) { stat.pop(ds.top().space(),ds.top().choice()); ds.pop().dispose(); } else { assert(ds.top().work()); ds.top().next(); if (!ds.top().work()) n_work--; return true; } return false; } forceinline Path::Edge& Path::top(void) const { assert(!ds.empty()); return ds.top(); } forceinline bool Path::empty(void) const { return ds.empty(); } forceinline void Path::commit(Space* s, int i) const { const Edge& n = ds[i]; s->commit(*n.choice(),n.alt()); } forceinline int Path::lc(void) const { int l = ds.entries()-1; while (ds[l].space() == NULL) l--; return l; } forceinline int Path::entries(void) const { return ds.entries(); } forceinline size_t Path::size(void) const { return ds.size(); } forceinline void Path::unwind(int l) { assert((ds[l].space() == NULL) || ds[l].space()->failed()); int n = ds.entries(); for (int i=l; i Config::steal_limit; } forceinline Space* Path::steal(Worker& stat, unsigned long int& d) { // Find position to steal: leave sufficient work int n = ds.entries()-1; unsigned int w = 0; while (n >= 0) { if (ds[n].work()) w++; if (w > Config::steal_limit) { // Okay, there is sufficient work left int l=n; // Find last copy while (ds[l].space() == NULL) l--; Space* c = ds[l].space()->clone(false); // Recompute, if necessary for (int i=l; icommit(*ds[n].choice(),ds[n].steal()); if (!ds[n].work()) n_work--; d = stat.steal_depth(static_cast(n+1)); return c; } n--; } return NULL; } forceinline Space* Path::recompute(unsigned int& d, unsigned int a_d, Worker& stat) { assert(!ds.empty()); // Recompute space according to path // Also say distance to copy (d == 0) requires immediate copying // Check for LAO if ((ds.top().space() != NULL) && ds.top().rightmost()) { Space* s = ds.top().space(); stat.lao(s); s->commit(*ds.top().choice(),ds.top().alt()); assert(ds.entries()-1 == lc()); ds.top().space(NULL); d = 0; return s; } // General case for recomputation int l = lc(); // Position of last clone int n = ds.entries(); // Number of stack entries // New distance, if no adaptive recomputation d = static_cast(n - l); Space* s = ds[l].space()->clone(); // Last clone if (d < a_d) { // No adaptive recomputation for (int i=l; i(d >> 1); // Middle between copy and top int i = l; // To iterate over all entries // Recompute up to middle for (; istatus(stat); /* * Again, the space might already propagate to failure (due to * weakly monotonic propagators). */ if (ss == SS_FAILED) { // s must be deleted as it is not on the stack delete s; stat.fail++; unwind(i); return NULL; } ds[i].space(s->clone()); stat.adapt(ds[i].space()); d = static_cast(n-i); } // Finally do the remaining commits for (; icommit(*ds.top().choice(),ds.top().alt()); assert(ds.entries()-1 == lc()); if (mark > ds.entries()-1) { mark = ds.entries()-1; s->constrain(*best); } ds.top().space(NULL); d = 0; return s; } // General case for recomputation int l = lc(); // Position of last clone int n = ds.entries(); // Number of stack entries // New distance, if no adaptive recomputation d = static_cast(n - l); Space* s = ds[l].space(); // Last clone if (l < mark) { mark = l; s->constrain(*best); // The space on the stack could be failed now as an additional // constraint might have been added. if (s->status(stat) == SS_FAILED) { // s does not need deletion as it is on the stack (unwind does this) stat.fail++; unwind(l); return NULL; } // It is important to replace the space on the stack with the // copy: a copy might be much smaller due to flushed caches // of propagators Space* c = s->clone(); ds[l].space(c); stat.constrained(s,c); } else { s = s->clone(); } if (d < a_d) { // No adaptive recomputation for (int i=l; i(d >> 1); // Middle between copy and top int i = l; // To iterate over all entries // Recompute up to middle for (; istatus(stat); /* * Again, the space might already propagate to failure * * This can be for two reasons: * - constrain is true, so we fail * - the space has weakly monotonic propagators */ if (ss == SS_FAILED) { // s must be deleted as it is not on the stack delete s; stat.fail++; unwind(i); return NULL; } ds[i].space(s->clone()); stat.adapt(ds[i].space()); d = static_cast(n-i); } // Finally do the remaining commits for (; i