/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ // This implementation of poly1305 is by Andrew Moon // (https://github.com/floodyberry/poly1305-donna) and released as public // domain. It implements SIMD vectorization based on the algorithm described in // http://cr.yp.to/papers.html#neoncrypto. Unrolled to 2 powers, i.e. 64 byte // block size #include #include #include "../internal.h" #if defined(BORINGSSL_HAS_UINT128) && defined(OPENSSL_X86_64) #include typedef __m128i xmmi; static const alignas(16) uint32_t poly1305_x64_sse2_message_mask[4] = { (1 << 26) - 1, 0, (1 << 26) - 1, 0}; static const alignas(16) uint32_t poly1305_x64_sse2_5[4] = {5, 0, 5, 0}; static const alignas(16) uint32_t poly1305_x64_sse2_1shl128[4] = { (1 << 24), 0, (1 << 24), 0}; static inline uint128_t add128(uint128_t a, uint128_t b) { return a + b; } static inline uint128_t add128_64(uint128_t a, uint64_t b) { return a + b; } static inline uint128_t mul64x64_128(uint64_t a, uint64_t b) { return (uint128_t)a * b; } static inline uint64_t lo128(uint128_t a) { return (uint64_t)a; } static inline uint64_t shr128(uint128_t v, const int shift) { return (uint64_t)(v >> shift); } static inline uint64_t shr128_pair(uint64_t hi, uint64_t lo, const int shift) { return (uint64_t)((((uint128_t)hi << 64) | lo) >> shift); } typedef struct poly1305_power_t { union { xmmi v; uint64_t u[2]; uint32_t d[4]; } R20, R21, R22, R23, R24, S21, S22, S23, S24; } poly1305_power; typedef struct poly1305_state_internal_t { poly1305_power P[2]; /* 288 bytes, top 32 bit halves unused = 144 bytes of free storage */ union { xmmi H[5]; // 80 bytes uint64_t HH[10]; }; // uint64_t r0,r1,r2; [24 bytes] // uint64_t pad0,pad1; [16 bytes] uint64_t started; // 8 bytes uint64_t leftover; // 8 bytes uint8_t buffer[64]; // 64 bytes } poly1305_state_internal; /* 448 bytes total + 63 bytes for alignment = 511 bytes raw */ static_assert(sizeof(struct poly1305_state_internal_t) + 63 <= sizeof(poly1305_state), "poly1305_state isn't large enough to hold aligned " "poly1305_state_internal_t"); static inline poly1305_state_internal *poly1305_aligned_state( poly1305_state *state) { return (poly1305_state_internal *)(((uint64_t)state + 63) & ~63); } static inline size_t poly1305_min(size_t a, size_t b) { return (a < b) ? a : b; } void CRYPTO_poly1305_init(poly1305_state *state, const uint8_t key[32]) { poly1305_state_internal *st = poly1305_aligned_state(state); poly1305_power *p; uint64_t r0, r1, r2; uint64_t t0, t1; // clamp key t0 = CRYPTO_load_u64_le(key + 0); t1 = CRYPTO_load_u64_le(key + 8); r0 = t0 & 0xffc0fffffff; t0 >>= 44; t0 |= t1 << 20; r1 = t0 & 0xfffffc0ffff; t1 >>= 24; r2 = t1 & 0x00ffffffc0f; // store r in un-used space of st->P[1] p = &st->P[1]; p->R20.d[1] = (uint32_t)(r0); p->R20.d[3] = (uint32_t)(r0 >> 32); p->R21.d[1] = (uint32_t)(r1); p->R21.d[3] = (uint32_t)(r1 >> 32); p->R22.d[1] = (uint32_t)(r2); p->R22.d[3] = (uint32_t)(r2 >> 32); // store pad p->R23.d[1] = CRYPTO_load_u32_le(key + 16); p->R23.d[3] = CRYPTO_load_u32_le(key + 20); p->R24.d[1] = CRYPTO_load_u32_le(key + 24); p->R24.d[3] = CRYPTO_load_u32_le(key + 28); // H = 0 st->H[0] = _mm_setzero_si128(); st->H[1] = _mm_setzero_si128(); st->H[2] = _mm_setzero_si128(); st->H[3] = _mm_setzero_si128(); st->H[4] = _mm_setzero_si128(); st->started = 0; st->leftover = 0; } static void poly1305_first_block(poly1305_state_internal *st, const uint8_t *m) { const xmmi MMASK = _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask); const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5); const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128); xmmi T5, T6; poly1305_power *p; uint128_t d[3]; uint64_t r0, r1, r2; uint64_t r20, r21, r22, s22; uint64_t pad0, pad1; uint64_t c; uint64_t i; // pull out stored info p = &st->P[1]; r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1]; r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1]; r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1]; pad0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1]; pad1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1]; // compute powers r^2,r^4 r20 = r0; r21 = r1; r22 = r2; for (i = 0; i < 2; i++) { s22 = r22 * (5 << 2); d[0] = add128(mul64x64_128(r20, r20), mul64x64_128(r21 * 2, s22)); d[1] = add128(mul64x64_128(r22, s22), mul64x64_128(r20 * 2, r21)); d[2] = add128(mul64x64_128(r21, r21), mul64x64_128(r22 * 2, r20)); r20 = lo128(d[0]) & 0xfffffffffff; c = shr128(d[0], 44); d[1] = add128_64(d[1], c); r21 = lo128(d[1]) & 0xfffffffffff; c = shr128(d[1], 44); d[2] = add128_64(d[2], c); r22 = lo128(d[2]) & 0x3ffffffffff; c = shr128(d[2], 42); r20 += c * 5; c = (r20 >> 44); r20 = r20 & 0xfffffffffff; r21 += c; p->R20.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)(r20)&0x3ffffff), _MM_SHUFFLE(1, 0, 1, 0)); p->R21.v = _mm_shuffle_epi32( _mm_cvtsi32_si128((uint32_t)((r20 >> 26) | (r21 << 18)) & 0x3ffffff), _MM_SHUFFLE(1, 0, 1, 0)); p->R22.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r21 >> 8)) & 0x3ffffff), _MM_SHUFFLE(1, 0, 1, 0)); p->R23.v = _mm_shuffle_epi32( _mm_cvtsi32_si128((uint32_t)((r21 >> 34) | (r22 << 10)) & 0x3ffffff), _MM_SHUFFLE(1, 0, 1, 0)); p->R24.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r22 >> 16))), _MM_SHUFFLE(1, 0, 1, 0)); p->S21.v = _mm_mul_epu32(p->R21.v, FIVE); p->S22.v = _mm_mul_epu32(p->R22.v, FIVE); p->S23.v = _mm_mul_epu32(p->R23.v, FIVE); p->S24.v = _mm_mul_epu32(p->R24.v, FIVE); p--; } // put saved info back p = &st->P[1]; p->R20.d[1] = (uint32_t)(r0); p->R20.d[3] = (uint32_t)(r0 >> 32); p->R21.d[1] = (uint32_t)(r1); p->R21.d[3] = (uint32_t)(r1 >> 32); p->R22.d[1] = (uint32_t)(r2); p->R22.d[3] = (uint32_t)(r2 >> 32); p->R23.d[1] = (uint32_t)(pad0); p->R23.d[3] = (uint32_t)(pad0 >> 32); p->R24.d[1] = (uint32_t)(pad1); p->R24.d[3] = (uint32_t)(pad1 >> 32); // H = [Mx,My] T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)), _mm_loadl_epi64((const xmmi *)(m + 16))); T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)), _mm_loadl_epi64((const xmmi *)(m + 24))); st->H[0] = _mm_and_si128(MMASK, T5); st->H[1] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); st->H[2] = _mm_and_si128(MMASK, T5); st->H[3] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); st->H[4] = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); } static void poly1305_blocks(poly1305_state_internal *st, const uint8_t *m, size_t bytes) { const xmmi MMASK = _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask); const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5); const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128); poly1305_power *p; xmmi H0, H1, H2, H3, H4; xmmi T0, T1, T2, T3, T4, T5, T6; xmmi M0, M1, M2, M3, M4; xmmi C1, C2; H0 = st->H[0]; H1 = st->H[1]; H2 = st->H[2]; H3 = st->H[3]; H4 = st->H[4]; while (bytes >= 64) { // H *= [r^4,r^4] p = &st->P[0]; T0 = _mm_mul_epu32(H0, p->R20.v); T1 = _mm_mul_epu32(H0, p->R21.v); T2 = _mm_mul_epu32(H0, p->R22.v); T3 = _mm_mul_epu32(H0, p->R23.v); T4 = _mm_mul_epu32(H0, p->R24.v); T5 = _mm_mul_epu32(H1, p->S24.v); T6 = _mm_mul_epu32(H1, p->R20.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6); T5 = _mm_mul_epu32(H2, p->S23.v); T6 = _mm_mul_epu32(H2, p->S24.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6); T5 = _mm_mul_epu32(H3, p->S22.v); T6 = _mm_mul_epu32(H3, p->S23.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6); T5 = _mm_mul_epu32(H4, p->S21.v); T6 = _mm_mul_epu32(H4, p->S22.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6); T5 = _mm_mul_epu32(H1, p->R21.v); T6 = _mm_mul_epu32(H1, p->R22.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6); T5 = _mm_mul_epu32(H2, p->R20.v); T6 = _mm_mul_epu32(H2, p->R21.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6); T5 = _mm_mul_epu32(H3, p->S24.v); T6 = _mm_mul_epu32(H3, p->R20.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6); T5 = _mm_mul_epu32(H4, p->S23.v); T6 = _mm_mul_epu32(H4, p->S24.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6); T5 = _mm_mul_epu32(H1, p->R23.v); T4 = _mm_add_epi64(T4, T5); T5 = _mm_mul_epu32(H2, p->R22.v); T4 = _mm_add_epi64(T4, T5); T5 = _mm_mul_epu32(H3, p->R21.v); T4 = _mm_add_epi64(T4, T5); T5 = _mm_mul_epu32(H4, p->R20.v); T4 = _mm_add_epi64(T4, T5); // H += [Mx,My]*[r^2,r^2] T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)), _mm_loadl_epi64((const xmmi *)(m + 16))); T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)), _mm_loadl_epi64((const xmmi *)(m + 24))); M0 = _mm_and_si128(MMASK, T5); M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); M2 = _mm_and_si128(MMASK, T5); M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); p = &st->P[1]; T5 = _mm_mul_epu32(M0, p->R20.v); T6 = _mm_mul_epu32(M0, p->R21.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6); T5 = _mm_mul_epu32(M1, p->S24.v); T6 = _mm_mul_epu32(M1, p->R20.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6); T5 = _mm_mul_epu32(M2, p->S23.v); T6 = _mm_mul_epu32(M2, p->S24.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6); T5 = _mm_mul_epu32(M3, p->S22.v); T6 = _mm_mul_epu32(M3, p->S23.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6); T5 = _mm_mul_epu32(M4, p->S21.v); T6 = _mm_mul_epu32(M4, p->S22.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6); T5 = _mm_mul_epu32(M0, p->R22.v); T6 = _mm_mul_epu32(M0, p->R23.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6); T5 = _mm_mul_epu32(M1, p->R21.v); T6 = _mm_mul_epu32(M1, p->R22.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6); T5 = _mm_mul_epu32(M2, p->R20.v); T6 = _mm_mul_epu32(M2, p->R21.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6); T5 = _mm_mul_epu32(M3, p->S24.v); T6 = _mm_mul_epu32(M3, p->R20.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6); T5 = _mm_mul_epu32(M4, p->S23.v); T6 = _mm_mul_epu32(M4, p->S24.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6); T5 = _mm_mul_epu32(M0, p->R24.v); T4 = _mm_add_epi64(T4, T5); T5 = _mm_mul_epu32(M1, p->R23.v); T4 = _mm_add_epi64(T4, T5); T5 = _mm_mul_epu32(M2, p->R22.v); T4 = _mm_add_epi64(T4, T5); T5 = _mm_mul_epu32(M3, p->R21.v); T4 = _mm_add_epi64(T4, T5); T5 = _mm_mul_epu32(M4, p->R20.v); T4 = _mm_add_epi64(T4, T5); // H += [Mx,My] T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 32)), _mm_loadl_epi64((const xmmi *)(m + 48))); T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 40)), _mm_loadl_epi64((const xmmi *)(m + 56))); M0 = _mm_and_si128(MMASK, T5); M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); M2 = _mm_and_si128(MMASK, T5); M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); T0 = _mm_add_epi64(T0, M0); T1 = _mm_add_epi64(T1, M1); T2 = _mm_add_epi64(T2, M2); T3 = _mm_add_epi64(T3, M3); T4 = _mm_add_epi64(T4, M4); // reduce C1 = _mm_srli_epi64(T0, 26); C2 = _mm_srli_epi64(T3, 26); T0 = _mm_and_si128(T0, MMASK); T3 = _mm_and_si128(T3, MMASK); T1 = _mm_add_epi64(T1, C1); T4 = _mm_add_epi64(T4, C2); C1 = _mm_srli_epi64(T1, 26); C2 = _mm_srli_epi64(T4, 26); T1 = _mm_and_si128(T1, MMASK); T4 = _mm_and_si128(T4, MMASK); T2 = _mm_add_epi64(T2, C1); T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE)); C1 = _mm_srli_epi64(T2, 26); C2 = _mm_srli_epi64(T0, 26); T2 = _mm_and_si128(T2, MMASK); T0 = _mm_and_si128(T0, MMASK); T3 = _mm_add_epi64(T3, C1); T1 = _mm_add_epi64(T1, C2); C1 = _mm_srli_epi64(T3, 26); T3 = _mm_and_si128(T3, MMASK); T4 = _mm_add_epi64(T4, C1); // H = (H*[r^4,r^4] + [Mx,My]*[r^2,r^2] + [Mx,My]) H0 = T0; H1 = T1; H2 = T2; H3 = T3; H4 = T4; m += 64; bytes -= 64; } st->H[0] = H0; st->H[1] = H1; st->H[2] = H2; st->H[3] = H3; st->H[4] = H4; } static size_t poly1305_combine(poly1305_state_internal *st, const uint8_t *m, size_t bytes) { const xmmi MMASK = _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask); const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128); const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5); poly1305_power *p; xmmi H0, H1, H2, H3, H4; xmmi M0, M1, M2, M3, M4; xmmi T0, T1, T2, T3, T4, T5, T6; xmmi C1, C2; uint64_t r0, r1, r2; uint64_t t0, t1, t2, t3, t4; uint64_t c; size_t consumed = 0; H0 = st->H[0]; H1 = st->H[1]; H2 = st->H[2]; H3 = st->H[3]; H4 = st->H[4]; // p = [r^2,r^2] p = &st->P[1]; if (bytes >= 32) { // H *= [r^2,r^2] T0 = _mm_mul_epu32(H0, p->R20.v); T1 = _mm_mul_epu32(H0, p->R21.v); T2 = _mm_mul_epu32(H0, p->R22.v); T3 = _mm_mul_epu32(H0, p->R23.v); T4 = _mm_mul_epu32(H0, p->R24.v); T5 = _mm_mul_epu32(H1, p->S24.v); T6 = _mm_mul_epu32(H1, p->R20.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6); T5 = _mm_mul_epu32(H2, p->S23.v); T6 = _mm_mul_epu32(H2, p->S24.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6); T5 = _mm_mul_epu32(H3, p->S22.v); T6 = _mm_mul_epu32(H3, p->S23.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6); T5 = _mm_mul_epu32(H4, p->S21.v); T6 = _mm_mul_epu32(H4, p->S22.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6); T5 = _mm_mul_epu32(H1, p->R21.v); T6 = _mm_mul_epu32(H1, p->R22.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6); T5 = _mm_mul_epu32(H2, p->R20.v); T6 = _mm_mul_epu32(H2, p->R21.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6); T5 = _mm_mul_epu32(H3, p->S24.v); T6 = _mm_mul_epu32(H3, p->R20.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6); T5 = _mm_mul_epu32(H4, p->S23.v); T6 = _mm_mul_epu32(H4, p->S24.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6); T5 = _mm_mul_epu32(H1, p->R23.v); T4 = _mm_add_epi64(T4, T5); T5 = _mm_mul_epu32(H2, p->R22.v); T4 = _mm_add_epi64(T4, T5); T5 = _mm_mul_epu32(H3, p->R21.v); T4 = _mm_add_epi64(T4, T5); T5 = _mm_mul_epu32(H4, p->R20.v); T4 = _mm_add_epi64(T4, T5); // H += [Mx,My] T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)), _mm_loadl_epi64((const xmmi *)(m + 16))); T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)), _mm_loadl_epi64((const xmmi *)(m + 24))); M0 = _mm_and_si128(MMASK, T5); M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); M2 = _mm_and_si128(MMASK, T5); M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); T0 = _mm_add_epi64(T0, M0); T1 = _mm_add_epi64(T1, M1); T2 = _mm_add_epi64(T2, M2); T3 = _mm_add_epi64(T3, M3); T4 = _mm_add_epi64(T4, M4); // reduce C1 = _mm_srli_epi64(T0, 26); C2 = _mm_srli_epi64(T3, 26); T0 = _mm_and_si128(T0, MMASK); T3 = _mm_and_si128(T3, MMASK); T1 = _mm_add_epi64(T1, C1); T4 = _mm_add_epi64(T4, C2); C1 = _mm_srli_epi64(T1, 26); C2 = _mm_srli_epi64(T4, 26); T1 = _mm_and_si128(T1, MMASK); T4 = _mm_and_si128(T4, MMASK); T2 = _mm_add_epi64(T2, C1); T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE)); C1 = _mm_srli_epi64(T2, 26); C2 = _mm_srli_epi64(T0, 26); T2 = _mm_and_si128(T2, MMASK); T0 = _mm_and_si128(T0, MMASK); T3 = _mm_add_epi64(T3, C1); T1 = _mm_add_epi64(T1, C2); C1 = _mm_srli_epi64(T3, 26); T3 = _mm_and_si128(T3, MMASK); T4 = _mm_add_epi64(T4, C1); // H = (H*[r^2,r^2] + [Mx,My]) H0 = T0; H1 = T1; H2 = T2; H3 = T3; H4 = T4; consumed = 32; } // finalize, H *= [r^2,r] r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1]; r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1]; r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1]; p->R20.d[2] = (uint32_t)(r0)&0x3ffffff; p->R21.d[2] = (uint32_t)((r0 >> 26) | (r1 << 18)) & 0x3ffffff; p->R22.d[2] = (uint32_t)((r1 >> 8)) & 0x3ffffff; p->R23.d[2] = (uint32_t)((r1 >> 34) | (r2 << 10)) & 0x3ffffff; p->R24.d[2] = (uint32_t)((r2 >> 16)); p->S21.d[2] = p->R21.d[2] * 5; p->S22.d[2] = p->R22.d[2] * 5; p->S23.d[2] = p->R23.d[2] * 5; p->S24.d[2] = p->R24.d[2] * 5; // H *= [r^2,r] T0 = _mm_mul_epu32(H0, p->R20.v); T1 = _mm_mul_epu32(H0, p->R21.v); T2 = _mm_mul_epu32(H0, p->R22.v); T3 = _mm_mul_epu32(H0, p->R23.v); T4 = _mm_mul_epu32(H0, p->R24.v); T5 = _mm_mul_epu32(H1, p->S24.v); T6 = _mm_mul_epu32(H1, p->R20.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6); T5 = _mm_mul_epu32(H2, p->S23.v); T6 = _mm_mul_epu32(H2, p->S24.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6); T5 = _mm_mul_epu32(H3, p->S22.v); T6 = _mm_mul_epu32(H3, p->S23.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6); T5 = _mm_mul_epu32(H4, p->S21.v); T6 = _mm_mul_epu32(H4, p->S22.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6); T5 = _mm_mul_epu32(H1, p->R21.v); T6 = _mm_mul_epu32(H1, p->R22.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6); T5 = _mm_mul_epu32(H2, p->R20.v); T6 = _mm_mul_epu32(H2, p->R21.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6); T5 = _mm_mul_epu32(H3, p->S24.v); T6 = _mm_mul_epu32(H3, p->R20.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6); T5 = _mm_mul_epu32(H4, p->S23.v); T6 = _mm_mul_epu32(H4, p->S24.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6); T5 = _mm_mul_epu32(H1, p->R23.v); T4 = _mm_add_epi64(T4, T5); T5 = _mm_mul_epu32(H2, p->R22.v); T4 = _mm_add_epi64(T4, T5); T5 = _mm_mul_epu32(H3, p->R21.v); T4 = _mm_add_epi64(T4, T5); T5 = _mm_mul_epu32(H4, p->R20.v); T4 = _mm_add_epi64(T4, T5); C1 = _mm_srli_epi64(T0, 26); C2 = _mm_srli_epi64(T3, 26); T0 = _mm_and_si128(T0, MMASK); T3 = _mm_and_si128(T3, MMASK); T1 = _mm_add_epi64(T1, C1); T4 = _mm_add_epi64(T4, C2); C1 = _mm_srli_epi64(T1, 26); C2 = _mm_srli_epi64(T4, 26); T1 = _mm_and_si128(T1, MMASK); T4 = _mm_and_si128(T4, MMASK); T2 = _mm_add_epi64(T2, C1); T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE)); C1 = _mm_srli_epi64(T2, 26); C2 = _mm_srli_epi64(T0, 26); T2 = _mm_and_si128(T2, MMASK); T0 = _mm_and_si128(T0, MMASK); T3 = _mm_add_epi64(T3, C1); T1 = _mm_add_epi64(T1, C2); C1 = _mm_srli_epi64(T3, 26); T3 = _mm_and_si128(T3, MMASK); T4 = _mm_add_epi64(T4, C1); // H = H[0]+H[1] H0 = _mm_add_epi64(T0, _mm_srli_si128(T0, 8)); H1 = _mm_add_epi64(T1, _mm_srli_si128(T1, 8)); H2 = _mm_add_epi64(T2, _mm_srli_si128(T2, 8)); H3 = _mm_add_epi64(T3, _mm_srli_si128(T3, 8)); H4 = _mm_add_epi64(T4, _mm_srli_si128(T4, 8)); t0 = _mm_cvtsi128_si32(H0); c = (t0 >> 26); t0 &= 0x3ffffff; t1 = _mm_cvtsi128_si32(H1) + c; c = (t1 >> 26); t1 &= 0x3ffffff; t2 = _mm_cvtsi128_si32(H2) + c; c = (t2 >> 26); t2 &= 0x3ffffff; t3 = _mm_cvtsi128_si32(H3) + c; c = (t3 >> 26); t3 &= 0x3ffffff; t4 = _mm_cvtsi128_si32(H4) + c; c = (t4 >> 26); t4 &= 0x3ffffff; t0 = t0 + (c * 5); c = (t0 >> 26); t0 &= 0x3ffffff; t1 = t1 + c; st->HH[0] = ((t0) | (t1 << 26)) & UINT64_C(0xfffffffffff); st->HH[1] = ((t1 >> 18) | (t2 << 8) | (t3 << 34)) & UINT64_C(0xfffffffffff); st->HH[2] = ((t3 >> 10) | (t4 << 16)) & UINT64_C(0x3ffffffffff); return consumed; } void CRYPTO_poly1305_update(poly1305_state *state, const uint8_t *m, size_t bytes) { poly1305_state_internal *st = poly1305_aligned_state(state); size_t want; // Work around a C language bug. See https://crbug.com/1019588. if (bytes == 0) { return; } // need at least 32 initial bytes to start the accelerated branch if (!st->started) { if ((st->leftover == 0) && (bytes > 32)) { poly1305_first_block(st, m); m += 32; bytes -= 32; } else { want = poly1305_min(32 - st->leftover, bytes); OPENSSL_memcpy(st->buffer + st->leftover, m, want); bytes -= want; m += want; st->leftover += want; if ((st->leftover < 32) || (bytes == 0)) { return; } poly1305_first_block(st, st->buffer); st->leftover = 0; } st->started = 1; } // handle leftover if (st->leftover) { want = poly1305_min(64 - st->leftover, bytes); OPENSSL_memcpy(st->buffer + st->leftover, m, want); bytes -= want; m += want; st->leftover += want; if (st->leftover < 64) { return; } poly1305_blocks(st, st->buffer, 64); st->leftover = 0; } // process 64 byte blocks if (bytes >= 64) { want = (bytes & ~63); poly1305_blocks(st, m, want); m += want; bytes -= want; } if (bytes) { OPENSSL_memcpy(st->buffer + st->leftover, m, bytes); st->leftover += bytes; } } void CRYPTO_poly1305_finish(poly1305_state *state, uint8_t mac[16]) { poly1305_state_internal *st = poly1305_aligned_state(state); size_t leftover = st->leftover; uint8_t *m = st->buffer; uint128_t d[3]; uint64_t h0, h1, h2; uint64_t t0, t1; uint64_t g0, g1, g2, c, nc; uint64_t r0, r1, r2, s1, s2; poly1305_power *p; if (st->started) { size_t consumed = poly1305_combine(st, m, leftover); leftover -= consumed; m += consumed; } // st->HH will either be 0 or have the combined result h0 = st->HH[0]; h1 = st->HH[1]; h2 = st->HH[2]; p = &st->P[1]; r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1]; r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1]; r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1]; s1 = r1 * (5 << 2); s2 = r2 * (5 << 2); if (leftover < 16) { goto poly1305_donna_atmost15bytes; } poly1305_donna_atleast16bytes: t0 = CRYPTO_load_u64_le(m + 0); t1 = CRYPTO_load_u64_le(m + 8); h0 += t0 & 0xfffffffffff; t0 = shr128_pair(t1, t0, 44); h1 += t0 & 0xfffffffffff; h2 += (t1 >> 24) | ((uint64_t)1 << 40); poly1305_donna_mul: d[0] = add128(add128(mul64x64_128(h0, r0), mul64x64_128(h1, s2)), mul64x64_128(h2, s1)); d[1] = add128(add128(mul64x64_128(h0, r1), mul64x64_128(h1, r0)), mul64x64_128(h2, s2)); d[2] = add128(add128(mul64x64_128(h0, r2), mul64x64_128(h1, r1)), mul64x64_128(h2, r0)); h0 = lo128(d[0]) & 0xfffffffffff; c = shr128(d[0], 44); d[1] = add128_64(d[1], c); h1 = lo128(d[1]) & 0xfffffffffff; c = shr128(d[1], 44); d[2] = add128_64(d[2], c); h2 = lo128(d[2]) & 0x3ffffffffff; c = shr128(d[2], 42); h0 += c * 5; m += 16; leftover -= 16; if (leftover >= 16) { goto poly1305_donna_atleast16bytes; } // final bytes poly1305_donna_atmost15bytes: if (!leftover) { goto poly1305_donna_finish; } m[leftover++] = 1; OPENSSL_memset(m + leftover, 0, 16 - leftover); leftover = 16; t0 = CRYPTO_load_u64_le(m + 0); t1 = CRYPTO_load_u64_le(m + 8); h0 += t0 & 0xfffffffffff; t0 = shr128_pair(t1, t0, 44); h1 += t0 & 0xfffffffffff; h2 += (t1 >> 24); goto poly1305_donna_mul; poly1305_donna_finish: c = (h0 >> 44); h0 &= 0xfffffffffff; h1 += c; c = (h1 >> 44); h1 &= 0xfffffffffff; h2 += c; c = (h2 >> 42); h2 &= 0x3ffffffffff; h0 += c * 5; g0 = h0 + 5; c = (g0 >> 44); g0 &= 0xfffffffffff; g1 = h1 + c; c = (g1 >> 44); g1 &= 0xfffffffffff; g2 = h2 + c - ((uint64_t)1 << 42); c = (g2 >> 63) - 1; nc = ~c; h0 = (h0 & nc) | (g0 & c); h1 = (h1 & nc) | (g1 & c); h2 = (h2 & nc) | (g2 & c); // pad t0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1]; t1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1]; h0 += (t0 & 0xfffffffffff); c = (h0 >> 44); h0 &= 0xfffffffffff; t0 = shr128_pair(t1, t0, 44); h1 += (t0 & 0xfffffffffff) + c; c = (h1 >> 44); h1 &= 0xfffffffffff; t1 = (t1 >> 24); h2 += (t1)+c; CRYPTO_store_u64_le(mac + 0, ((h0) | (h1 << 44))); CRYPTO_store_u64_le(mac + 8, ((h1 >> 20) | (h2 << 24))); } #endif // BORINGSSL_HAS_UINT128 && OPENSSL_X86_64