#ifndef RUBY_SHAPE_H #define RUBY_SHAPE_H #include "internal/gc.h" #if (SIZEOF_UINT64_T <= SIZEOF_VALUE) #define SIZEOF_SHAPE_T 4 #define SHAPE_IN_BASIC_FLAGS 1 typedef uint32_t attr_index_t; typedef uint32_t shape_id_t; # define SHAPE_ID_NUM_BITS 32 #else #define SIZEOF_SHAPE_T 2 #define SHAPE_IN_BASIC_FLAGS 0 typedef uint16_t attr_index_t; typedef uint16_t shape_id_t; # define SHAPE_ID_NUM_BITS 16 #endif typedef uint32_t redblack_id_t; #define MAX_IVARS (attr_index_t)(-1) # define SHAPE_MASK (((uintptr_t)1 << SHAPE_ID_NUM_BITS) - 1) # define SHAPE_FLAG_MASK (((VALUE)-1) >> SHAPE_ID_NUM_BITS) # define SHAPE_FLAG_SHIFT ((SIZEOF_VALUE * 8) - SHAPE_ID_NUM_BITS) # define SHAPE_MAX_VARIATIONS 8 # define INVALID_SHAPE_ID SHAPE_MASK # define ROOT_SHAPE_ID 0x0 # define SPECIAL_CONST_SHAPE_ID (SIZE_POOL_COUNT * 2) # define OBJ_TOO_COMPLEX_SHAPE_ID (SPECIAL_CONST_SHAPE_ID + 1) typedef struct redblack_node redblack_node_t; struct rb_shape { struct rb_id_table * edges; // id_table from ID (ivar) to next shape ID edge_name; // ID (ivar) for transition from parent to rb_shape attr_index_t next_iv_index; uint32_t capacity; // Total capacity of the object with this shape uint8_t type; uint8_t size_pool_index; shape_id_t parent_id; redblack_node_t * ancestor_index; }; typedef struct rb_shape rb_shape_t; struct redblack_node { ID key; rb_shape_t * value; redblack_id_t l; redblack_id_t r; }; enum shape_type { SHAPE_ROOT, SHAPE_IVAR, SHAPE_FROZEN, SHAPE_T_OBJECT, SHAPE_OBJ_TOO_COMPLEX, }; typedef struct { /* object shapes */ rb_shape_t *shape_list; rb_shape_t *root_shape; shape_id_t next_shape_id; redblack_node_t *shape_cache; unsigned int cache_size; } rb_shape_tree_t; RUBY_EXTERN rb_shape_tree_t *rb_shape_tree_ptr; static inline rb_shape_tree_t * rb_current_shape_tree(void) { return rb_shape_tree_ptr; } #define GET_SHAPE_TREE() rb_current_shape_tree() static inline shape_id_t get_shape_id_from_flags(VALUE obj) { RUBY_ASSERT(!RB_SPECIAL_CONST_P(obj)); return (shape_id_t)(SHAPE_MASK & ((RBASIC(obj)->flags) >> SHAPE_FLAG_SHIFT)); } static inline void set_shape_id_in_flags(VALUE obj, shape_id_t shape_id) { // Ractors are occupying the upper 32 bits of flags, but only in debug mode // Object shapes are occupying top bits RBASIC(obj)->flags &= SHAPE_FLAG_MASK; RBASIC(obj)->flags |= ((VALUE)(shape_id) << SHAPE_FLAG_SHIFT); } #if SHAPE_IN_BASIC_FLAGS static inline shape_id_t RBASIC_SHAPE_ID(VALUE obj) { return get_shape_id_from_flags(obj); } static inline void RBASIC_SET_SHAPE_ID(VALUE obj, shape_id_t shape_id) { set_shape_id_in_flags(obj, shape_id); } #endif static inline shape_id_t ROBJECT_SHAPE_ID(VALUE obj) { RBIMPL_ASSERT_TYPE(obj, RUBY_T_OBJECT); return get_shape_id_from_flags(obj); } static inline void ROBJECT_SET_SHAPE_ID(VALUE obj, shape_id_t shape_id) { RBIMPL_ASSERT_TYPE(obj, RUBY_T_OBJECT); set_shape_id_in_flags(obj, shape_id); } static inline shape_id_t RCLASS_SHAPE_ID(VALUE obj) { RUBY_ASSERT(RB_TYPE_P(obj, T_CLASS) || RB_TYPE_P(obj, T_MODULE)); return get_shape_id_from_flags(obj); } static inline void RCLASS_SET_SHAPE_ID(VALUE obj, shape_id_t shape_id) { RUBY_ASSERT(RB_TYPE_P(obj, T_CLASS) || RB_TYPE_P(obj, T_MODULE)); set_shape_id_in_flags(obj, shape_id); } rb_shape_t * rb_shape_get_root_shape(void); int32_t rb_shape_id_offset(void); rb_shape_t * rb_shape_get_parent(rb_shape_t * shape); rb_shape_t* rb_shape_get_shape_by_id(shape_id_t shape_id); shape_id_t rb_shape_get_shape_id(VALUE obj); rb_shape_t * rb_shape_get_next_iv_shape(rb_shape_t * shape, ID id); bool rb_shape_get_iv_index(rb_shape_t * shape, ID id, attr_index_t * value); bool rb_shape_get_iv_index_with_hint(shape_id_t shape_id, ID id, attr_index_t * value, shape_id_t *shape_id_hint); bool rb_shape_obj_too_complex(VALUE obj); void rb_shape_set_shape(VALUE obj, rb_shape_t* shape); rb_shape_t* rb_shape_get_shape(VALUE obj); int rb_shape_frozen_shape_p(rb_shape_t* shape); rb_shape_t* rb_shape_transition_shape_frozen(VALUE obj); bool rb_shape_transition_shape_remove_ivar(VALUE obj, ID id, rb_shape_t *shape, VALUE * removed); rb_shape_t* rb_shape_get_next(rb_shape_t* shape, VALUE obj, ID id); rb_shape_t* rb_shape_get_next_no_warnings(rb_shape_t* shape, VALUE obj, ID id); rb_shape_t * rb_shape_rebuild_shape(rb_shape_t * initial_shape, rb_shape_t * dest_shape); static inline uint32_t ROBJECT_IV_CAPACITY(VALUE obj) { RBIMPL_ASSERT_TYPE(obj, RUBY_T_OBJECT); // Asking for capacity doesn't make sense when the object is using // a hash table for storing instance variables RUBY_ASSERT(!rb_shape_obj_too_complex(obj)); return rb_shape_get_shape_by_id(ROBJECT_SHAPE_ID(obj))->capacity; } static inline st_table * ROBJECT_IV_HASH(VALUE obj) { RBIMPL_ASSERT_TYPE(obj, RUBY_T_OBJECT); RUBY_ASSERT(rb_shape_obj_too_complex(obj)); return (st_table *)ROBJECT(obj)->as.heap.ivptr; } static inline void ROBJECT_SET_IV_HASH(VALUE obj, const st_table *tbl) { RBIMPL_ASSERT_TYPE(obj, RUBY_T_OBJECT); RUBY_ASSERT(rb_shape_obj_too_complex(obj)); ROBJECT(obj)->as.heap.ivptr = (VALUE *)tbl; } size_t rb_id_table_size(const struct rb_id_table *tbl); static inline uint32_t ROBJECT_IV_COUNT(VALUE obj) { if (rb_shape_obj_too_complex(obj)) { return (uint32_t)rb_st_table_size(ROBJECT_IV_HASH(obj)); } else { RBIMPL_ASSERT_TYPE(obj, RUBY_T_OBJECT); RUBY_ASSERT(!rb_shape_obj_too_complex(obj)); return rb_shape_get_shape_by_id(ROBJECT_SHAPE_ID(obj))->next_iv_index; } } static inline uint32_t RBASIC_IV_COUNT(VALUE obj) { return rb_shape_get_shape_by_id(rb_shape_get_shape_id(obj))->next_iv_index; } rb_shape_t *rb_shape_traverse_from_new_root(rb_shape_t *initial_shape, rb_shape_t *orig_shape); bool rb_shape_set_shape_id(VALUE obj, shape_id_t shape_id); VALUE rb_obj_debug_shape(VALUE self, VALUE obj); // For ext/objspace RUBY_SYMBOL_EXPORT_BEGIN typedef void each_shape_callback(rb_shape_t * shape, void *data); void rb_shape_each_shape(each_shape_callback callback, void *data); size_t rb_shape_memsize(rb_shape_t *shape); size_t rb_shape_edges_count(rb_shape_t *shape); size_t rb_shape_depth(rb_shape_t *shape); shape_id_t rb_shape_id(rb_shape_t * shape); RUBY_SYMBOL_EXPORT_END #endif