(function (global, factory) {
  if (typeof define === "function" && define.amd) {
    define(["exports"], factory);
  } else if (typeof exports !== "undefined") {
    factory(exports);
  } else {
    var mod = {
      exports: {}
    };
    factory(mod.exports);
    global.SimplexNoise = mod.exports;
  }
})(typeof globalThis !== "undefined" ? globalThis : typeof self !== "undefined" ? self : this, function (_exports) {
  "use strict";

  Object.defineProperty(_exports, "__esModule", {
    value: true
  });
  _exports.SimplexNoise = void 0;

  function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } }

  function _defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } }

  function _createClass(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties(Constructor.prototype, protoProps); if (staticProps) _defineProperties(Constructor, staticProps); Object.defineProperty(Constructor, "prototype", { writable: false }); return Constructor; }

  // Ported from Stefan Gustavson's java implementation
  // http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
  // Read Stefan's excellent paper for details on how this code works.
  //
  // Sean McCullough banksean@gmail.com
  //
  // Added 4D noise

  /**
   * You can pass in a random number generator object if you like.
   * It is assumed to have a random() method.
   */
  var SimplexNoise = /*#__PURE__*/function () {
    function SimplexNoise() {
      var r = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : Math;

      _classCallCheck(this, SimplexNoise);

      this.grad3 = [[1, 1, 0], [-1, 1, 0], [1, -1, 0], [-1, -1, 0], [1, 0, 1], [-1, 0, 1], [1, 0, -1], [-1, 0, -1], [0, 1, 1], [0, -1, 1], [0, 1, -1], [0, -1, -1]];
      this.grad4 = [[0, 1, 1, 1], [0, 1, 1, -1], [0, 1, -1, 1], [0, 1, -1, -1], [0, -1, 1, 1], [0, -1, 1, -1], [0, -1, -1, 1], [0, -1, -1, -1], [1, 0, 1, 1], [1, 0, 1, -1], [1, 0, -1, 1], [1, 0, -1, -1], [-1, 0, 1, 1], [-1, 0, 1, -1], [-1, 0, -1, 1], [-1, 0, -1, -1], [1, 1, 0, 1], [1, 1, 0, -1], [1, -1, 0, 1], [1, -1, 0, -1], [-1, 1, 0, 1], [-1, 1, 0, -1], [-1, -1, 0, 1], [-1, -1, 0, -1], [1, 1, 1, 0], [1, 1, -1, 0], [1, -1, 1, 0], [1, -1, -1, 0], [-1, 1, 1, 0], [-1, 1, -1, 0], [-1, -1, 1, 0], [-1, -1, -1, 0]];
      this.p = [];

      for (var i = 0; i < 256; i++) {
        this.p[i] = Math.floor(r.random() * 256);
      } // To remove the need for index wrapping, double the permutation table length


      this.perm = [];

      for (var _i = 0; _i < 512; _i++) {
        this.perm[_i] = this.p[_i & 255];
      } // A lookup table to traverse the simplex around a given point in 4D.
      // Details can be found where this table is used, in the 4D noise method.


      this.simplex = [[0, 1, 2, 3], [0, 1, 3, 2], [0, 0, 0, 0], [0, 2, 3, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1, 2, 3, 0], [0, 2, 1, 3], [0, 0, 0, 0], [0, 3, 1, 2], [0, 3, 2, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1, 3, 2, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1, 2, 0, 3], [0, 0, 0, 0], [1, 3, 0, 2], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [2, 3, 0, 1], [2, 3, 1, 0], [1, 0, 2, 3], [1, 0, 3, 2], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [2, 0, 3, 1], [0, 0, 0, 0], [2, 1, 3, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [2, 0, 1, 3], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [3, 0, 1, 2], [3, 0, 2, 1], [0, 0, 0, 0], [3, 1, 2, 0], [2, 1, 0, 3], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [3, 1, 0, 2], [0, 0, 0, 0], [3, 2, 0, 1], [3, 2, 1, 0]];
    }

    _createClass(SimplexNoise, [{
      key: "dot",
      value: function dot(g, x, y) {
        return g[0] * x + g[1] * y;
      }
    }, {
      key: "dot3",
      value: function dot3(g, x, y, z) {
        return g[0] * x + g[1] * y + g[2] * z;
      }
    }, {
      key: "dot4",
      value: function dot4(g, x, y, z, w) {
        return g[0] * x + g[1] * y + g[2] * z + g[3] * w;
      }
    }, {
      key: "noise",
      value: function noise(xin, yin) {
        var n0; // Noise contributions from the three corners

        var n1;
        var n2; // Skew the input space to determine which simplex cell we're in

        var F2 = 0.5 * (Math.sqrt(3.0) - 1.0);
        var s = (xin + yin) * F2; // Hairy factor for 2D

        var i = Math.floor(xin + s);
        var j = Math.floor(yin + s);
        var G2 = (3.0 - Math.sqrt(3.0)) / 6.0;
        var t = (i + j) * G2;
        var X0 = i - t; // Unskew the cell origin back to (x,y) space

        var Y0 = j - t;
        var x0 = xin - X0; // The x,y distances from the cell origin

        var y0 = yin - Y0; // For the 2D case, the simplex shape is an equilateral triangle.
        // Determine which simplex we are in.

        var i1; // Offsets for second (middle) corner of simplex in (i,j) coords

        var j1;

        if (x0 > y0) {
          i1 = 1;
          j1 = 0; // lower triangle, XY order: (0,0)->(1,0)->(1,1)
        } else {
          i1 = 0;
          j1 = 1;
        } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
        // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
        // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
        // c = (3-sqrt(3))/6


        var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords

        var y1 = y0 - j1 + G2;
        var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords

        var y2 = y0 - 1.0 + 2.0 * G2; // Work out the hashed gradient indices of the three simplex corners

        var ii = i & 255;
        var jj = j & 255;
        var gi0 = this.perm[ii + this.perm[jj]] % 12;
        var gi1 = this.perm[ii + i1 + this.perm[jj + j1]] % 12;
        var gi2 = this.perm[ii + 1 + this.perm[jj + 1]] % 12; // Calculate the contribution from the three corners

        var t0 = 0.5 - x0 * x0 - y0 * y0;
        if (t0 < 0) n0 = 0.0;else {
          t0 *= t0;
          n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
        }
        var t1 = 0.5 - x1 * x1 - y1 * y1;
        if (t1 < 0) n1 = 0.0;else {
          t1 *= t1;
          n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1);
        }
        var t2 = 0.5 - x2 * x2 - y2 * y2;
        if (t2 < 0) n2 = 0.0;else {
          t2 *= t2;
          n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2);
        } // Add contributions from each corner to get the final noise value.
        // The result is scaled to return values in the interval [-1,1].

        return 70.0 * (n0 + n1 + n2);
      } // 3D simplex noise

    }, {
      key: "noise3d",
      value: function noise3d(xin, yin, zin) {
        var n0; // Noise contributions from the four corners

        var n1;
        var n2;
        var n3; // Skew the input space to determine which simplex cell we're in

        var F3 = 1.0 / 3.0;
        var s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D

        var i = Math.floor(xin + s);
        var j = Math.floor(yin + s);
        var k = Math.floor(zin + s);
        var G3 = 1.0 / 6.0; // Very nice and simple unskew factor, too

        var t = (i + j + k) * G3;
        var X0 = i - t; // Unskew the cell origin back to (x,y,z) space

        var Y0 = j - t;
        var Z0 = k - t;
        var x0 = xin - X0; // The x,y,z distances from the cell origin

        var y0 = yin - Y0;
        var z0 = zin - Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
        // Determine which simplex we are in.

        var i1; // Offsets for second corner of simplex in (i,j,k) coords

        var j1;
        var k1;
        var i2; // Offsets for third corner of simplex in (i,j,k) coords

        var j2;
        var k2;

        if (x0 >= y0) {
          if (y0 >= z0) {
            i1 = 1;
            j1 = 0;
            k1 = 0;
            i2 = 1;
            j2 = 1;
            k2 = 0; // X Y Z order
          } else if (x0 >= z0) {
            i1 = 1;
            j1 = 0;
            k1 = 0;
            i2 = 1;
            j2 = 0;
            k2 = 1; // X Z Y order
          } else {
            i1 = 0;
            j1 = 0;
            k1 = 1;
            i2 = 1;
            j2 = 0;
            k2 = 1;
          } // Z X Y order

        } else {
          // x0<y0
          if (y0 < z0) {
            i1 = 0;
            j1 = 0;
            k1 = 1;
            i2 = 0;
            j2 = 1;
            k2 = 1; // Z Y X order
          } else if (x0 < z0) {
            i1 = 0;
            j1 = 1;
            k1 = 0;
            i2 = 0;
            j2 = 1;
            k2 = 1; // Y Z X order
          } else {
            i1 = 0;
            j1 = 1;
            k1 = 0;
            i2 = 1;
            j2 = 1;
            k2 = 0;
          } // Y X Z order

        } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
        // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
        // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
        // c = 1/6.


        var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords

        var y1 = y0 - j1 + G3;
        var z1 = z0 - k1 + G3;
        var x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords

        var y2 = y0 - j2 + 2.0 * G3;
        var z2 = z0 - k2 + 2.0 * G3;
        var x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords

        var y3 = y0 - 1.0 + 3.0 * G3;
        var z3 = z0 - 1.0 + 3.0 * G3; // Work out the hashed gradient indices of the four simplex corners

        var ii = i & 255;
        var jj = j & 255;
        var kk = k & 255;
        var gi0 = this.perm[ii + this.perm[jj + this.perm[kk]]] % 12;
        var gi1 = this.perm[ii + i1 + this.perm[jj + j1 + this.perm[kk + k1]]] % 12;
        var gi2 = this.perm[ii + i2 + this.perm[jj + j2 + this.perm[kk + k2]]] % 12;
        var gi3 = this.perm[ii + 1 + this.perm[jj + 1 + this.perm[kk + 1]]] % 12; // Calculate the contribution from the four corners

        var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
        if (t0 < 0) n0 = 0.0;else {
          t0 *= t0;
          n0 = t0 * t0 * this.dot3(this.grad3[gi0], x0, y0, z0);
        }
        var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
        if (t1 < 0) n1 = 0.0;else {
          t1 *= t1;
          n1 = t1 * t1 * this.dot3(this.grad3[gi1], x1, y1, z1);
        }
        var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
        if (t2 < 0) n2 = 0.0;else {
          t2 *= t2;
          n2 = t2 * t2 * this.dot3(this.grad3[gi2], x2, y2, z2);
        }
        var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
        if (t3 < 0) n3 = 0.0;else {
          t3 *= t3;
          n3 = t3 * t3 * this.dot3(this.grad3[gi3], x3, y3, z3);
        } // Add contributions from each corner to get the final noise value.
        // The result is scaled to stay just inside [-1,1]

        return 32.0 * (n0 + n1 + n2 + n3);
      } // 4D simplex noise

    }, {
      key: "noise4d",
      value: function noise4d(x, y, z, w) {
        // For faster and easier lookups
        var grad4 = this.grad4;
        var simplex = this.simplex;
        var perm = this.perm; // The skewing and unskewing factors are hairy again for the 4D case

        var F4 = (Math.sqrt(5.0) - 1.0) / 4.0;
        var G4 = (5.0 - Math.sqrt(5.0)) / 20.0;
        var n0; // Noise contributions from the five corners

        var n1;
        var n2;
        var n3;
        var n4; // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in

        var s = (x + y + z + w) * F4; // Factor for 4D skewing

        var i = Math.floor(x + s);
        var j = Math.floor(y + s);
        var k = Math.floor(z + s);
        var l = Math.floor(w + s);
        var t = (i + j + k + l) * G4; // Factor for 4D unskewing

        var X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space

        var Y0 = j - t;
        var Z0 = k - t;
        var W0 = l - t;
        var x0 = x - X0; // The x,y,z,w distances from the cell origin

        var y0 = y - Y0;
        var z0 = z - Z0;
        var w0 = w - W0; // For the 4D case, the simplex is a 4D shape I won't even try to describe.
        // To find out which of the 24 possible simplices we're in, we need to
        // determine the magnitude ordering of x0, y0, z0 and w0.
        // The method below is a good way of finding the ordering of x,y,z,w and
        // then find the correct traversal order for the simplex we’re in.
        // First, six pair-wise comparisons are performed between each possible pair
        // of the four coordinates, and the results are used to add up binary bits
        // for an integer index.

        var c1 = x0 > y0 ? 32 : 0;
        var c2 = x0 > z0 ? 16 : 0;
        var c3 = y0 > z0 ? 8 : 0;
        var c4 = x0 > w0 ? 4 : 0;
        var c5 = y0 > w0 ? 2 : 0;
        var c6 = z0 > w0 ? 1 : 0;
        var c = c1 + c2 + c3 + c4 + c5 + c6; // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
        // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
        // impossible. Only the 24 indices which have non-zero entries make any sense.
        // We use a thresholding to set the coordinates in turn from the largest magnitude.
        // The number 3 in the "simplex" array is at the position of the largest coordinate.

        var i1 = simplex[c][0] >= 3 ? 1 : 0;
        var j1 = simplex[c][1] >= 3 ? 1 : 0;
        var k1 = simplex[c][2] >= 3 ? 1 : 0;
        var l1 = simplex[c][3] >= 3 ? 1 : 0; // The number 2 in the "simplex" array is at the second largest coordinate.

        var i2 = simplex[c][0] >= 2 ? 1 : 0;
        var j2 = simplex[c][1] >= 2 ? 1 : 0;
        var k2 = simplex[c][2] >= 2 ? 1 : 0;
        var l2 = simplex[c][3] >= 2 ? 1 : 0; // The number 1 in the "simplex" array is at the second smallest coordinate.

        var i3 = simplex[c][0] >= 1 ? 1 : 0;
        var j3 = simplex[c][1] >= 1 ? 1 : 0;
        var k3 = simplex[c][2] >= 1 ? 1 : 0;
        var l3 = simplex[c][3] >= 1 ? 1 : 0; // The fifth corner has all coordinate offsets = 1, so no need to look that up.

        var x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords

        var y1 = y0 - j1 + G4;
        var z1 = z0 - k1 + G4;
        var w1 = w0 - l1 + G4;
        var x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords

        var y2 = y0 - j2 + 2.0 * G4;
        var z2 = z0 - k2 + 2.0 * G4;
        var w2 = w0 - l2 + 2.0 * G4;
        var x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords

        var y3 = y0 - j3 + 3.0 * G4;
        var z3 = z0 - k3 + 3.0 * G4;
        var w3 = w0 - l3 + 3.0 * G4;
        var x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords

        var y4 = y0 - 1.0 + 4.0 * G4;
        var z4 = z0 - 1.0 + 4.0 * G4;
        var w4 = w0 - 1.0 + 4.0 * G4; // Work out the hashed gradient indices of the five simplex corners

        var ii = i & 255;
        var jj = j & 255;
        var kk = k & 255;
        var ll = l & 255;
        var gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32;
        var gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32;
        var gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32;
        var gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32;
        var gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32; // Calculate the contribution from the five corners

        var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
        if (t0 < 0) n0 = 0.0;else {
          t0 *= t0;
          n0 = t0 * t0 * this.dot4(grad4[gi0], x0, y0, z0, w0);
        }
        var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
        if (t1 < 0) n1 = 0.0;else {
          t1 *= t1;
          n1 = t1 * t1 * this.dot4(grad4[gi1], x1, y1, z1, w1);
        }
        var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
        if (t2 < 0) n2 = 0.0;else {
          t2 *= t2;
          n2 = t2 * t2 * this.dot4(grad4[gi2], x2, y2, z2, w2);
        }
        var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
        if (t3 < 0) n3 = 0.0;else {
          t3 *= t3;
          n3 = t3 * t3 * this.dot4(grad4[gi3], x3, y3, z3, w3);
        }
        var t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
        if (t4 < 0) n4 = 0.0;else {
          t4 *= t4;
          n4 = t4 * t4 * this.dot4(grad4[gi4], x4, y4, z4, w4);
        } // Sum up and scale the result to cover the range [-1,1]

        return 27.0 * (n0 + n1 + n2 + n3 + n4);
      }
    }]);

    return SimplexNoise;
  }();

  _exports.SimplexNoise = SimplexNoise;
});