"use strict"; exports.__esModule = true; exports.matchesPattern = matchesPattern; exports.has = has; exports.isnt = isnt; exports.equals = equals; exports.isNodeType = isNodeType; exports.canHaveVariableDeclarationOrExpression = canHaveVariableDeclarationOrExpression; exports.isCompletionRecord = isCompletionRecord; exports.isStatementOrBlock = isStatementOrBlock; exports.referencesImport = referencesImport; exports.getSource = getSource; exports.willIMaybeExecuteBefore = willIMaybeExecuteBefore; exports._guessExecutionStatusRelativeTo = _guessExecutionStatusRelativeTo; exports.resolve = resolve; exports._resolve = _resolve; // istanbul ignore next function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj["default"] = obj; return newObj; } } // istanbul ignore next function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { "default": obj }; } var _lodashCollectionIncludes = require("lodash/collection/includes"); var _lodashCollectionIncludes2 = _interopRequireDefault(_lodashCollectionIncludes); var _types = require("../../types"); var t = _interopRequireWildcard(_types); /** * Match the current node if it matches the provided `pattern`. * * For example, given the match `React.createClass` it would match the * parsed nodes of `React.createClass` and `React["createClass"]`. */ function matchesPattern(pattern, allowPartial) { // not a member expression if (!this.isMemberExpression()) return false; var parts = pattern.split("."); var search = [this.node]; var i = 0; function matches(name) { var part = parts[i]; return part === "*" || name === part; } while (search.length) { var node = search.shift(); if (allowPartial && i === parts.length) { return true; } if (t.isIdentifier(node)) { // this part doesn't match if (!matches(node.name)) return false; } else if (t.isLiteral(node)) { // this part doesn't match if (!matches(node.value)) return false; } else if (t.isMemberExpression(node)) { if (node.computed && !t.isLiteral(node.property)) { // we can't deal with this return false; } else { search.unshift(node.property); search.unshift(node.object); continue; } } else if (t.isThisExpression(node)) { if (!matches("this")) return false; } else { // we can't deal with this return false; } // too many parts if (++i > parts.length) { return false; } } return i === parts.length; } /** * Check whether we have the input `key`. If the `key` references an array then we check * if the array has any items, otherwise we just check if it's falsy. */ function has(key) { var val = this.node[key]; if (val && Array.isArray(val)) { return !!val.length; } else { return !!val; } } /** * Alias of `has`. */ var is = has; exports.is = is; /** * Opposite of `has`. */ function isnt(key) { return !this.has(key); } /** * Check whether the path node `key` strict equals `value`. */ function equals(key, value) { return this.node[key] === value; } /** * Check the type against our stored internal type of the node. This is handy when a node has * been removed yet we still internally know the type and need it to calculate node replacement. */ function isNodeType(type) { return t.isType(this.type, type); } /** * This checks whether or now we're in one of the following positions: * * for (KEY in right); * for (KEY;;); * * This is because these spots allow VariableDeclarations AND normal expressions so we need * to tell the path replacement that it's ok to replace this with an expression. */ function canHaveVariableDeclarationOrExpression() { return (this.key === "init" || this.key === "left") && this.parentPath.isFor(); } /** * Check whether the current path references a completion record */ function isCompletionRecord(allowInsideFunction) { var path = this; var first = true; do { var container = path.container; // we're in a function so can't be a completion record if (path.isFunction() && !first) { return !!allowInsideFunction; } first = false; // check to see if we're the last item in the container and if we are // we're a completion record! if (Array.isArray(container) && path.key !== container.length - 1) { return false; } } while ((path = path.parentPath) && !path.isProgram()); return true; } /** * Check whether or not the current `key` allows either a single statement or block statement * so we can explode it if necessary. */ function isStatementOrBlock() { if (this.parentPath.isLabeledStatement() || t.isBlockStatement(this.container)) { return false; } else { return _lodashCollectionIncludes2["default"](t.STATEMENT_OR_BLOCK_KEYS, this.key); } } /** * Check if the currently assigned path references the `importName` of `moduleSource`. */ function referencesImport(moduleSource, importName) { if (!this.isReferencedIdentifier()) return false; var binding = this.scope.getBinding(this.node.name); if (!binding || binding.kind !== "module") return false; var path = binding.path; var parent = path.parentPath; if (!parent.isImportDeclaration()) return false; // check moduleSource if (parent.node.source.value === moduleSource) { if (!importName) return true; } else { return false; } if (path.isImportDefaultSpecifier() && importName === "default") { return true; } if (path.isImportNamespaceSpecifier() && importName === "*") { return true; } if (path.isImportSpecifier() && path.node.imported.name === importName) { return true; } return false; } /** * Get the source code associated with this node. */ function getSource() { var node = this.node; if (node.end) { return this.hub.file.code.slice(node.start, node.end); } else { return ""; } } /** * [Please add a description.] */ function willIMaybeExecuteBefore(target) { return this._guessExecutionStatusRelativeTo(target) !== "after"; } /** * Given a `target` check the execution status of it relative to the current path. * * "Execution status" simply refers to where or not we **think** this will execuete * before or after the input `target` element. */ function _guessExecutionStatusRelativeTo(target) { // check if the two paths are in different functions, we can't track execution of these var targetFuncParent = target.scope.getFunctionParent(); var selfFuncParent = this.scope.getFunctionParent(); if (targetFuncParent !== selfFuncParent) { return "function"; } var targetPaths = target.getAncestry(); //if (targetPaths.indexOf(this) >= 0) return "after"; var selfPaths = this.getAncestry(); // get ancestor where the branches intersect var commonPath; var targetIndex; var selfIndex; for (selfIndex = 0; selfIndex < selfPaths.length; selfIndex++) { var selfPath = selfPaths[selfIndex]; targetIndex = targetPaths.indexOf(selfPath); if (targetIndex >= 0) { commonPath = selfPath; break; } } if (!commonPath) { return "before"; } // get the relationship paths that associate these nodes to their common ancestor var targetRelationship = targetPaths[targetIndex - 1]; var selfRelationship = selfPaths[selfIndex - 1]; if (!targetRelationship || !selfRelationship) { return "before"; } // container list so let's see which one is after the other if (targetRelationship.listKey && targetRelationship.container === selfRelationship.container) { return targetRelationship.key > selfRelationship.key ? "before" : "after"; } // otherwise we're associated by a parent node, check which key comes before the other var targetKeyPosition = t.VISITOR_KEYS[targetRelationship.type].indexOf(targetRelationship.key); var selfKeyPosition = t.VISITOR_KEYS[selfRelationship.type].indexOf(selfRelationship.key); return targetKeyPosition > selfKeyPosition ? "before" : "after"; } /** * Resolve a "pointer" `NodePath` to it's absolute path. */ function resolve(dangerous, resolved) { return this._resolve(dangerous, resolved) || this; } /** * [Please add a description.] */ function _resolve(dangerous, resolved) { // detect infinite recursion // todo: possibly have a max length on this just to be safe if (resolved && resolved.indexOf(this) >= 0) return; // we store all the paths we've "resolved" in this array to prevent infinite recursion resolved = resolved || []; resolved.push(this); if (this.isVariableDeclarator()) { if (this.get("id").isIdentifier()) { return this.get("init").resolve(dangerous, resolved); } else { // otherwise it's a request for a pattern and that's a bit more tricky } } else if (this.isReferencedIdentifier()) { var binding = this.scope.getBinding(this.node.name); if (!binding) return; // reassigned so we can't really resolve it if (!binding.constant) return; // todo - lookup module in dependency graph if (binding.kind === "module") return; if (binding.path !== this) { return binding.path.resolve(dangerous, resolved); } } else if (this.isTypeCastExpression()) { return this.get("expression").resolve(dangerous, resolved); } else if (dangerous && this.isMemberExpression()) { // this is dangerous, as non-direct target assignments will mutate it's state // making this resolution inaccurate var targetKey = this.toComputedKey(); if (!t.isLiteral(targetKey)) return; var targetName = targetKey.value; var target = this.get("object").resolve(dangerous, resolved); if (target.isObjectExpression()) { var props = target.get("properties"); var _arr = props; for (var _i = 0; _i < _arr.length; _i++) { var prop = _arr[_i]; if (!prop.isProperty()) continue; var key = prop.get("key"); // { foo: obj } var match = prop.isnt("computed") && key.isIdentifier({ name: targetName }); // { "foo": "obj" } or { ["foo"]: "obj" } match = match || key.isLiteral({ value: targetName }); if (match) return prop.get("value").resolve(dangerous, resolved); } } else if (target.isArrayExpression() && !isNaN(+targetName)) { var elems = target.get("elements"); var elem = elems[targetName]; if (elem) return elem.resolve(dangerous, resolved); } } }