Sha256: e473f9d0b34c0b35fc8cc8a792a448f06c9f0c786708a496b4e42e1e911fb7db

Contents?: true

Size: 1.42 KB

Versions: 5

Compression:

Stored size: 1.42 KB

Contents

module Ankusa
  INFTY = 1.0 / 0.0

  class NaiveBayesClassifier
    include Classifier

    def classify(text, classes=nil)
      # return the most probable class
      log_likelihoods(text, classes).sort_by { |c| -c[1] }.first.first
    end
    
    # Classes is an array of classes to look at
    def classifications(text, classnames=nil)
      result = log_likelihoods text, classnames
      result.keys.each { |k|
        result[k] = (result[k] == INFTY) ? 0 : Math.exp(result[k])
      }

      # normalize to get probs
      sum = result.values.inject { |x,y| x+y }
      result.keys.each { |k| result[k] = result[k] / sum }
      result
    end

    # Classes is an array of classes to look at
    def log_likelihoods(text, classnames=nil)
      classnames ||= @classnames
      result = Hash.new 0

      TextHash.new(text).each { |word, count|
        probs = get_word_probs(word, classnames)
        classnames.each { |k| 
          # log likelihood should be infinity if we've never seen the klass
          result[k] += probs[k] > 0 ? (Math.log(probs[k]) * count) : INFTY
        }
      }

      # add the prior
      doc_counts = doc_count_totals.select { |k,v| classnames.include? k }.map { |k,v| v }
      doc_count_total = (doc_counts.inject { |x,y| x+y } + classnames.length).to_f
      classnames.each { |k| 
        result[k] += Math.log((@storage.get_doc_count(k) + 1).to_f / doc_count_total) 
      }

      result
    end

  end

end

Version data entries

5 entries across 5 versions & 1 rubygems

Version Path
ankusa-0.0.13 lib/ankusa/naive_bayes.rb
ankusa-0.0.12 lib/ankusa/naive_bayes.rb
ankusa-0.0.11 lib/ankusa/naive_bayes.rb
ankusa-0.0.10 lib/ankusa/naive_bayes.rb
ankusa-0.0.9 lib/ankusa/naive_bayes.rb