module Statsample module Regression module Multiple # Base class for Multiple Regression Engines class BaseEngine include Statsample::Summarizable # Name of analysis attr_accessor :name # Minimum number of valid case for pairs of correlation attr_reader :cases # Number of valid cases (listwise) attr_reader :valid_cases # Number of total cases (dataset.cases) attr_reader :total_cases def self.univariate? true end def initialize(ds, y_var, opts = Hash.new) @ds=ds @predictors_n=@ds.fields.size-1 @total_cases=@ds.cases @cases=@ds.cases @y_var=y_var @r2=nil @name=_("Multiple Regression: %s over %s") % [ ds.fields.join(",") , @y_var] opts.each{|k,v| self.send("#{k}=",v) if self.respond_to? k } end # Calculate F Test def anova @anova||=Statsample::Anova::OneWay.new(:ss_num=>ssr, :ss_den=>sse, :df_num=>df_r, :df_den=>df_e, :name_numerator=>_("Regression"), :name_denominator=>_("Error"), :name=>"ANOVA") end # Standard error of estimate def se_estimate Math::sqrt(sse.quo(df_e)) end # Retrieves a vector with predicted values for y def predicted @total_cases.times.collect { |i| invalid=false vect=@dep_columns.collect {|v| invalid=true if v[i].nil?; v[i]} if invalid nil else process(vect) end }.to_vector(:scale) end # Retrieves a vector with standarized values for y def standarized_predicted predicted.standarized end # Retrieves a vector with residuals values for y def residuals (0...@total_cases).collect{|i| invalid=false vect=@dep_columns.collect{|v| invalid=true if v[i].nil?; v[i]} if invalid or @ds[@y_var][i].nil? nil else @ds[@y_var][i] - process(vect) end }.to_vector(:scale) end # R Multiple def r raise "You should implement this" end # Sum of squares Total def sst raise "You should implement this" end def r2_adjusted r2-((1-r2)*@predictors_n).quo(df_e) end # Sum of squares (regression) def ssr r2*sst end # Sum of squares (Error) def sse sst - ssr end # T values for coeffs def coeffs_t out={} se=coeffs_se coeffs.each do |k,v| out[k]=v / se[k] end out end # Mean square Regression def msr ssr.quo(df_r) end # Mean Square Error def mse sse.quo(df_e) end # Degrees of freedom for regression def df_r @predictors_n end # Degrees of freedom for error def df_e @valid_cases-@predictors_n-1 end # Fisher for Anova def f anova.f end # p-value of Fisher def probability anova.probability end # Tolerance for a given variable # http://talkstats.com/showthread.php?t=5056 def tolerance(var) ds=assign_names(@dep_columns) ds.each{|k,v| ds[k]=v.to_vector(:scale) } lr=self.class.new(ds.to_dataset,var) 1-lr.r2 end # Tolerances for each coefficient def coeffs_tolerances @fields.inject({}) {|a,f| a[f]=tolerance(f); a } end # Standard Error for coefficients def coeffs_se out={} mse=sse.quo(df_e) coeffs.each {|k,v| out[k]=Math::sqrt(mse/(@ds[k].sum_of_squares * tolerance(k))) } out end # Estandar error of R^2 # ???? def se_r2 Math::sqrt((4*r2*(1-r2)**2*(df_e)**2).quo((@cases**2-1)*(@cases+3))) end # Estimated Variance-Covariance Matrix # Used for calculation of se of constant def estimated_variance_covariance_matrix mse_p=mse columns=[] @ds_valid.fields.each{|k| v=@ds_valid[k] columns.push(v.data) unless k==@y_var } columns.unshift([1.0]*@valid_cases) x=Matrix.columns(columns) matrix=((x.t*x)).inverse * mse matrix.collect {|i| Math::sqrt(i) if i>0 } end # T for constant def constant_t constant.to_f/constant_se end # Standard error for constant def constant_se estimated_variance_covariance_matrix[0,0] end def report_building(b) b.section(:name=>@name) do |g| c=coeffs g.text _("Engine: %s") % self.class g.text(_("Cases(listwise)=%d(%d)") % [@total_cases, @valid_cases]) g.text _("R=%0.3f") % r g.text _("R^2=%0.3f") % r2 g.text _"R^2 Adj=%0.3f" % r2_adjusted g.text _("Std.Error R=%0.3f") % se_estimate g.text(_("Equation")+"="+ sprintf('%0.3f',constant) +" + "+ @fields.collect {|k| sprintf('%0.3f%s',c[k],k)}.join(' + ') ) g.parse_element(anova) sc=standarized_coeffs cse=coeffs_se g.table(:name=>_("Beta coefficients"), :header=>%w{coeff b beta se t}.collect{|field| _(field)} ) do |t| t.row([_("Constant"), sprintf("%0.3f", constant), "-", sprintf("%0.3f", constant_se), sprintf("%0.3f", constant_t)]) @fields.each do |f| t.row([f, sprintf("%0.3f", c[f]), sprintf("%0.3f", sc[f]), sprintf("%0.3f", cse[f]), sprintf("%0.3f", c[f].quo(cse[f]))]) end end end end def assign_names(c) a={} @fields.each_index {|i| a[@fields[i]]=c[i] } a end # Sum of squares of regression # using the predicted value minus y mean def ssr_direct mean=@dy.mean cases=0 ssr=(0...@ds.cases).inject(0) {|a,i| invalid=false v=@dep_columns.collect{|c| invalid=true if c[i].nil?; c[i]} if !invalid cases+=1 a+((process(v)-mean)**2) else a end } ssr end def sse_direct sst-ssr end def process(v) c=coeffs total=constant @fields.each_index{|i| total+=c[@fields[i]]*v[i] } total end end end end end