module TensorStream # Evaluator base module module Evaluator class OutputGroup include Enumerable attr_accessor :outputs, :data_types def initialize(outputs = [], data_types = []) @outputs = outputs @data_types = data_types end def each @outputs.map { |output| yield output } end end class UnsupportedOp < RuntimeError def initialize(tensor) @tensor = tensor end def message "unsupported op #{@tensor.operation}" end end ## # Evaluator base class # # Base class to be used by all tensor_stream evaluators, provides support functions class BaseEvaluator def initialize(session, _device, thread_pool: nil, log_intermediates: false) @session = session @log_intermediates = log_intermediates @thread_pool = thread_pool || Concurrent::ImmediateExecutor.new @context[:compute_history] = [] if log_intermediates end ## # Query all supported devices def self.query_supported_devices [Device.new("cpu", :cpu, self)] end ## # Select the best device available in the system for this evaluator def self.default_device Device.new("cpu", :cpu, self) end ## # Selects the best device with the specified query, query can # be evaluator specific def self.fetch_device(_query = []) Device.new("cpu", :cpu, self) end ## # Select device using uri def self.query_device(query) return default_device if query.nil? || query == :default all_devices = query_supported_devices substrs = query.split("/") substrs.each do |q| components = q.split(":") next if components.size.zero? if components[0] == "device" # use tensorflow convention device_type = components[1] select_index = components[2].to_i devices = all_devices.select { |d| d.type == device_type.downcase.to_sym } return nil if devices.empty? select_index = [devices.size - 1, select_index].min return devices[select_index] elsif %w[cpu gpu].include?(components[0]) device_type = components[0].to_sym select_index = components[1].to_i devices = all_devices.select { |d| d.type == device_type.downcase.to_sym } return nil if devices.empty? select_index = [devices.size - 1, select_index].min return devices[select_index] elsif components[0] == "ts" # tensorstream specific evaluator_class = TensorStream::Evaluator.evaluators[components[1]][:class] return nil unless self == evaluator_class return evaluator_class.fetch_device(components[2..components.size]) if evaluator_class.respond_to?(:fetch_device) return nil end end end ## # registers an op for the current evaluator class def self.register_op(opcode, options = {}, &block) @ops ||= {} if opcode.is_a?(Array) opcode.each do |op| @ops[op.to_sym] = {options: options, block: block} end else @ops[opcode.to_sym] = {options: options, block: block} end end ## # gets all supported ops for this Evaluator class def self.ops @ops ||= {} end def invoke(tensor, execution_context) return eval_tensor(tensor, execution_context) unless tensor.is_a?(Operation) raise UnsupportedOp.new(tensor), "op #{tensor.operation} is not yet supported" unless self.class.ops.key?(tensor.operation.to_sym) op = self.class.ops[tensor.operation.to_sym] op_options = op[:options] resolved_inputs = tensor.inputs.map { |i| next if i.nil? next i if op_options[:noop] if i.is_a?(Array) next i.collect { |sub_item| sub_item.is_a?(Tensor) ? global_eval(tensor, sub_item, execution_context) : sub_item } end global_eval(tensor, i, execution_context, op_options) } start_time = if profile_enabled? time = Time.now time.to_i * (10**9) + time.nsec end instance_exec(execution_context, tensor, resolved_inputs, &op[:block]).tap do |result| if profile_enabled? time = Time.now end_time = time.to_i * (10**9) + time.nsec @context[:profile] ||= {step: 0, operations: {}} @context[:profile][:step] += 1 @context[:profile][:operations][tensor.name] = {op: tensor.operation, step: @context[:profile][:step], eval_time: end_time - start_time, shape: tensor.shape ? tensor.shape.shape : nil, data_type: tensor.data_type, tensor: tensor,} end end end protected def profile_enabled? @context[:_options][:profile_enabled] end ## # called when passing control to another evaluator def perform_transition(tensor, input, _next_evaluator, execution_context) cache_key = "#{tensor.graph.object_id}_#{input.name}:#{object_id}" return @context[:_cache][cache_key] if @context[:_cache].key?(cache_key) result = @session.delegate_to_evaluator(input, @context, execution_context) convert_from_buffer(input, result).tap do |buffer| @context[:_cache][cache_key] = buffer if input.is_const end end def global_eval(tensor, input, execution_context, op_options = {}) return nil unless input return input unless input.is_a?(Tensor) # puts "global eval #{tensor.name}" @context[:_cache][:placement][input.name] = @session.assign_evaluator(input) if @context[:_cache][:placement][input.name].nil? if !on_same_device?(input) # tensor is on another device or evaluator # puts "transition #{object_id} -> #{@context[:_cache][:placement][input.name][1].object_id}" perform_transition(tensor, input, @context[:_cache][:placement][input.name][1], execution_context) else prepare_input(input, execution_context, op_options) end end def on_same_device?(tensor) object_id == @context[:_cache][:placement][tensor.name][1].object_id end def get_broadcast_gradient_args(input_a, input_b) return [[], []] if input_a == input_b input_a_args = [] input_b_args = [] input_a = Array.new(input_b.size) { |i| i < input_a.size ? input_a[i] : nil }.reverse if input_a.size < input_b.size input_b = Array.new(input_a.size) { |i| i < input_b.size ? input_b[i] : nil }.reverse if input_a.size > input_b.size input_a.reverse.zip(input_b.reverse).each_with_index do |item, index| a, b = item if a.nil? || b && (a < b) input_a_args << input_b.size - index - 1 elsif b.nil? || a && (a > b) input_b_args << input_a.size - index - 1 end end [input_a_args.reverse, input_b_args.reverse] end ## # converts from a ruby Buffer object to the evaluator's native buffer format def convert_from_buffer(_tensor, _result) raise "need implementation" end def prepare_input(_tensor, _context, _options = {}) raise "need implementation" end end def self.evaluators @evaluators ||= {} end def self.register_evaluator(klass, name, index = 0) @evaluators ||= {} @evaluators[name] = {name: name, class: klass, index: index} end def self.default_evaluators evaluators.values.sort { |v| v[:index] }.reverse.map { |v| v[:class] } end end end