// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2006-2009 the V8 project authors. All rights reserved.
// A lightweight X64 Assembler.
#ifndef V8_X64_ASSEMBLER_X64_H_
#define V8_X64_ASSEMBLER_X64_H_
#include "serialize.h"
namespace v8 {
namespace internal {
// Utility functions
// Test whether a 64-bit value is in a specific range.
static inline bool is_uint32(int64_t x) {
static const int64_t kUInt32Mask = V8_INT64_C(0xffffffff);
return x == (x & kUInt32Mask);
}
static inline bool is_int32(int64_t x) {
static const int64_t kMinIntValue = V8_INT64_C(-0x80000000);
return is_uint32(x - kMinIntValue);
}
static inline bool uint_is_int32(uint64_t x) {
static const uint64_t kMaxIntValue = V8_UINT64_C(0x80000000);
return x < kMaxIntValue;
}
static inline bool is_uint32(uint64_t x) {
static const uint64_t kMaxUIntValue = V8_UINT64_C(0x100000000);
return x < kMaxUIntValue;
}
// CPU Registers.
//
// 1) We would prefer to use an enum, but enum values are assignment-
// compatible with int, which has caused code-generation bugs.
//
// 2) We would prefer to use a class instead of a struct but we don't like
// the register initialization to depend on the particular initialization
// order (which appears to be different on OS X, Linux, and Windows for the
// installed versions of C++ we tried). Using a struct permits C-style
// "initialization". Also, the Register objects cannot be const as this
// forces initialization stubs in MSVC, making us dependent on initialization
// order.
//
// 3) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the struct in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
//
struct Register {
static Register toRegister(int code) {
Register r = { code };
return r;
}
bool is_valid() const { return 0 <= code_ && code_ < 16; }
bool is(Register reg) const { return code_ == reg.code_; }
int code() const {
ASSERT(is_valid());
return code_;
}
int bit() const {
return 1 << code_;
}
// Return the high bit of the register code as a 0 or 1. Used often
// when constructing the REX prefix byte.
int high_bit() const {
return code_ >> 3;
}
// Return the 3 low bits of the register code. Used when encoding registers
// in modR/M, SIB, and opcode bytes.
int low_bits() const {
return code_ & 0x7;
}
// (unfortunately we can't make this private in a struct when initializing
// by assignment.)
int code_;
};
extern Register rax;
extern Register rcx;
extern Register rdx;
extern Register rbx;
extern Register rsp;
extern Register rbp;
extern Register rsi;
extern Register rdi;
extern Register r8;
extern Register r9;
extern Register r10;
extern Register r11;
extern Register r12;
extern Register r13;
extern Register r14;
extern Register r15;
extern Register no_reg;
struct MMXRegister {
bool is_valid() const { return 0 <= code_ && code_ < 2; }
int code() const {
ASSERT(is_valid());
return code_;
}
int code_;
};
extern MMXRegister mm0;
extern MMXRegister mm1;
extern MMXRegister mm2;
extern MMXRegister mm3;
extern MMXRegister mm4;
extern MMXRegister mm5;
extern MMXRegister mm6;
extern MMXRegister mm7;
extern MMXRegister mm8;
extern MMXRegister mm9;
extern MMXRegister mm10;
extern MMXRegister mm11;
extern MMXRegister mm12;
extern MMXRegister mm13;
extern MMXRegister mm14;
extern MMXRegister mm15;
struct XMMRegister {
bool is_valid() const { return 0 <= code_ && code_ < 16; }
int code() const {
ASSERT(is_valid());
return code_;
}
// Return the high bit of the register code as a 0 or 1. Used often
// when constructing the REX prefix byte.
int high_bit() const {
return code_ >> 3;
}
// Return the 3 low bits of the register code. Used when encoding registers
// in modR/M, SIB, and opcode bytes.
int low_bits() const {
return code_ & 0x7;
}
int code_;
};
extern XMMRegister xmm0;
extern XMMRegister xmm1;
extern XMMRegister xmm2;
extern XMMRegister xmm3;
extern XMMRegister xmm4;
extern XMMRegister xmm5;
extern XMMRegister xmm6;
extern XMMRegister xmm7;
extern XMMRegister xmm8;
extern XMMRegister xmm9;
extern XMMRegister xmm10;
extern XMMRegister xmm11;
extern XMMRegister xmm12;
extern XMMRegister xmm13;
extern XMMRegister xmm14;
extern XMMRegister xmm15;
enum Condition {
// any value < 0 is considered no_condition
no_condition = -1,
overflow = 0,
no_overflow = 1,
below = 2,
above_equal = 3,
equal = 4,
not_equal = 5,
below_equal = 6,
above = 7,
negative = 8,
positive = 9,
parity_even = 10,
parity_odd = 11,
less = 12,
greater_equal = 13,
less_equal = 14,
greater = 15,
// Fake conditions that are handled by the
// opcodes using them.
always = 16,
never = 17,
// aliases
carry = below,
not_carry = above_equal,
zero = equal,
not_zero = not_equal,
sign = negative,
not_sign = positive,
last_condition = greater
};
// Returns the equivalent of !cc.
// Negation of the default no_condition (-1) results in a non-default
// no_condition value (-2). As long as tests for no_condition check
// for condition < 0, this will work as expected.
inline Condition NegateCondition(Condition cc);
// Corresponds to transposing the operands of a comparison.
inline Condition ReverseCondition(Condition cc) {
switch (cc) {
case below:
return above;
case above:
return below;
case above_equal:
return below_equal;
case below_equal:
return above_equal;
case less:
return greater;
case greater:
return less;
case greater_equal:
return less_equal;
case less_equal:
return greater_equal;
default:
return cc;
};
}
enum Hint {
no_hint = 0,
not_taken = 0x2e,
taken = 0x3e
};
// The result of negating a hint is as if the corresponding condition
// were negated by NegateCondition. That is, no_hint is mapped to
// itself and not_taken and taken are mapped to each other.
inline Hint NegateHint(Hint hint) {
return (hint == no_hint)
? no_hint
: ((hint == not_taken) ? taken : not_taken);
}
// -----------------------------------------------------------------------------
// Machine instruction Immediates
class Immediate BASE_EMBEDDED {
public:
explicit Immediate(int32_t value) : value_(value) {}
private:
int32_t value_;
friend class Assembler;
};
// -----------------------------------------------------------------------------
// Machine instruction Operands
enum ScaleFactor {
times_1 = 0,
times_2 = 1,
times_4 = 2,
times_8 = 3,
times_int_size = times_4,
times_half_pointer_size = times_4,
times_pointer_size = times_8
};
class Operand BASE_EMBEDDED {
public:
// [base + disp/r]
Operand(Register base, int32_t disp);
// [base + index*scale + disp/r]
Operand(Register base,
Register index,
ScaleFactor scale,
int32_t disp);
// [index*scale + disp/r]
Operand(Register index,
ScaleFactor scale,
int32_t disp);
private:
byte rex_;
byte buf_[10];
// The number of bytes in buf_.
unsigned int len_;
RelocInfo::Mode rmode_;
// Set the ModR/M byte without an encoded 'reg' register. The
// register is encoded later as part of the emit_operand operation.
// set_modrm can be called before or after set_sib and set_disp*.
inline void set_modrm(int mod, Register rm);
// Set the SIB byte if one is needed. Sets the length to 2 rather than 1.
inline void set_sib(ScaleFactor scale, Register index, Register base);
// Adds operand displacement fields (offsets added to the memory address).
// Needs to be called after set_sib, not before it.
inline void set_disp8(int disp);
inline void set_disp32(int disp);
friend class Assembler;
};
// CpuFeatures keeps track of which features are supported by the target CPU.
// Supported features must be enabled by a Scope before use.
// Example:
// if (CpuFeatures::IsSupported(SSE3)) {
// CpuFeatures::Scope fscope(SSE3);
// // Generate SSE3 floating point code.
// } else {
// // Generate standard x87 or SSE2 floating point code.
// }
class CpuFeatures : public AllStatic {
public:
// Detect features of the target CPU. Set safe defaults if the serializer
// is enabled (snapshots must be portable).
static void Probe();
// Check whether a feature is supported by the target CPU.
static bool IsSupported(CpuFeature f) {
if (f == SSE2 && !FLAG_enable_sse2) return false;
if (f == SSE3 && !FLAG_enable_sse3) return false;
if (f == CMOV && !FLAG_enable_cmov) return false;
if (f == RDTSC && !FLAG_enable_rdtsc) return false;
if (f == SAHF && !FLAG_enable_sahf) return false;
return (supported_ & (V8_UINT64_C(1) << f)) != 0;
}
// Check whether a feature is currently enabled.
static bool IsEnabled(CpuFeature f) {
return (enabled_ & (V8_UINT64_C(1) << f)) != 0;
}
// Enable a specified feature within a scope.
class Scope BASE_EMBEDDED {
#ifdef DEBUG
public:
explicit Scope(CpuFeature f) {
uint64_t mask = (V8_UINT64_C(1) << f);
ASSERT(CpuFeatures::IsSupported(f));
ASSERT(!Serializer::enabled() || (found_by_runtime_probing_ & mask) == 0);
old_enabled_ = CpuFeatures::enabled_;
CpuFeatures::enabled_ |= mask;
}
~Scope() { CpuFeatures::enabled_ = old_enabled_; }
private:
uint64_t old_enabled_;
#else
public:
explicit Scope(CpuFeature f) {}
#endif
};
private:
// Safe defaults include SSE2 and CMOV for X64. It is always available, if
// anyone checks, but they shouldn't need to check.
static const uint64_t kDefaultCpuFeatures = (1 << SSE2 | 1 << CMOV);
static uint64_t supported_;
static uint64_t enabled_;
static uint64_t found_by_runtime_probing_;
};
class Assembler : public Malloced {
private:
// We check before assembling an instruction that there is sufficient
// space to write an instruction and its relocation information.
// The relocation writer's position must be kGap bytes above the end of
// the generated instructions. This leaves enough space for the
// longest possible x64 instruction, 15 bytes, and the longest possible
// relocation information encoding, RelocInfoWriter::kMaxLength == 16.
// (There is a 15 byte limit on x64 instruction length that rules out some
// otherwise valid instructions.)
// This allows for a single, fast space check per instruction.
static const int kGap = 32;
public:
// Create an assembler. Instructions and relocation information are emitted
// into a buffer, with the instructions starting from the beginning and the
// relocation information starting from the end of the buffer. See CodeDesc
// for a detailed comment on the layout (globals.h).
//
// If the provided buffer is NULL, the assembler allocates and grows its own
// buffer, and buffer_size determines the initial buffer size. The buffer is
// owned by the assembler and deallocated upon destruction of the assembler.
//
// If the provided buffer is not NULL, the assembler uses the provided buffer
// for code generation and assumes its size to be buffer_size. If the buffer
// is too small, a fatal error occurs. No deallocation of the buffer is done
// upon destruction of the assembler.
Assembler(void* buffer, int buffer_size);
~Assembler();
// GetCode emits any pending (non-emitted) code and fills the descriptor
// desc. GetCode() is idempotent; it returns the same result if no other
// Assembler functions are invoked in between GetCode() calls.
void GetCode(CodeDesc* desc);
// Read/Modify the code target in the relative branch/call instruction at pc.
// On the x64 architecture, we use relative jumps with a 32-bit displacement
// to jump to other Code objects in the Code space in the heap.
// Jumps to C functions are done indirectly through a 64-bit register holding
// the absolute address of the target.
// These functions convert between absolute Addresses of Code objects and
// the relative displacements stored in the code.
static inline Address target_address_at(Address pc);
static inline void set_target_address_at(Address pc, Address target);
// This sets the branch destination (which is in the instruction on x64).
// This is for calls and branches within generated code.
inline static void set_target_at(Address instruction_payload,
Address target) {
set_target_address_at(instruction_payload, target);
}
// This sets the branch destination (which is a load instruction on x64).
// This is for calls and branches to runtime code.
inline static void set_external_target_at(Address instruction_payload,
Address target) {
*reinterpret_cast