// Copyright 2013 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // State Table follower for scanning UTF-8 strings without converting to // 32- or 16-bit Unicode values. // #ifdef COMPILER_MSVC // MSVC warns: warning C4309: 'initializing' : truncation of constant value // But the value is in fact not truncated. 0xFF still comes out 0xFF at // runtime. #pragma warning ( disable : 4309 ) #endif #include "utf8statetable.h" #include // for uintptr_t #include // for NULL, memcpy, memmove #include "integral_types.h" // for uint8, uint32, int8 #include "port.h" #include "stringpiece.h" #include "offsetmap.h" namespace CLD2 { static const int kReplaceAndResumeFlag = 0x80; // Bit in del byte to distinguish // optional next-state field // after replacement text static const int kHtmlPlaintextFlag = 0x80; // Bit in add byte to distinguish // HTML replacement vs. plaintext /** * This code implements a little interpreter for UTF8 state * tables. There are three kinds of quite-similar state tables, * property, scanning, and replacement. Each state in one of * these tables consists of an array of 256 or 64 one-byte * entries. The state is subscripted by an incoming source byte, * and the entry either specifies the next state or specifies an * action. Space-optimized tables have full 256-entry states for * the first byte of a UTF-8 character, but only 64-entry states * for continuation bytes. Space-optimized tables may only be * used with source input that has been checked to be * structurally- (or stronger interchange-) valid. * * A property state table has an unsigned one-byte property for * each possible UTF-8 character. One-byte character properties * are in the state[0] array, while for other lengths the * state[0] array gives the next state, which contains the * property value for two-byte characters or yet another state * for longer ones. The code simply loads the right number of * next-state values, then returns the final byte as property * value. There are no actions specified in property tables. * States are typically shared for multi-byte UTF-8 characters * that all have the same property value. * * A scanning state table has entries that are either a * next-state specifier for bytes that are accepted by the * scanner, or an exit action for the last byte of each * character that is rejected by the scanner. * * Scanning long strings involves a tight loop that picks up one * byte at a time and follows next-state value back to state[0] * for each accepted UTF-8 character. Scanning stops at the end * of the string or at the first character encountered that has * an exit action such as "reject". Timing information is given * below. * * Since so much of Google's text is 7-bit-ASCII values * (approximately 94% of the bytes of web documents), the * scanning interpreter has two speed optimizations. One checks * 8 bytes at a time to see if they are all in the range lo..hi, * as specified in constants in the overall statetable object. * The check involves ORing together four 4-byte values that * overflow into the high bit of some byte when a byte is out of * range. For seven-bit-ASCII, lo is 0x20 and hi is 0x7E. This * loop is about 8x faster than the one-byte-at-a-time loop. * * If checking for exit bytes in the 0x00-0x1F and 7F range is * unneeded, an even faster loop just looks at the high bits of * 8 bytes at once, and is about 1.33x faster than the lo..hi * loop. * * Exit from the scanning routines backs up to the first byte of * the rejected character, so the text spanned is always a * complete number of UTF-8 characters. The normal scanning exit * is at the first rejected character, or at the end of the * input text. Scanning also exits on any detected ill-formed * character or at a special do-again action built into some * exit-optimized tables. The do-again action gets back to the * top of the scanning loop to retry eight-byte ASCII scans. It * is typically put into state tables after four seven-bit-ASCII * characters in a row are seen, to allow restarting the fast * scan after some slower processing of multi-byte characters. * * A replacement state table is similar to a scanning state * table but has more extensive actions. The default * byte-at-a-time loop copies one byte from source to * destination and goes to the next state. The replacement * actions overwrite 1-3 bytes of the destination with different * bytes, possibly shortening the output by 1 or 2 bytes. The * replacement bytes come from within the state table, from * dummy states inserted just after any state that contains a * replacement action. This gives a quick address calculation for * the replacement byte(s) and gives some cache locality. * * Additional replacement actions use one or two bytes from * within dummy states to index a side table of more-extensive * replacements. The side table specifies a length of 0..15 * destination bytes to overwrite and a length of 0..127 bytes * to overwrite them with, plus the actual replacement bytes. * * This side table uses one extra bit to specify a pair of * replacements, the first to be used in an HTML context and the * second to be used in a plaintext context. This allows * replacements that are spelled with "<" in the former * context and "<" in the latter. * * The side table also uses an extra bit to specify a non-zero * next state after a replacement. This allows a combination * replacement and state change, used to implement a limited * version of the Boyer-Moore algorithm for multi-character * replacement without backtracking. This is useful when there * are overlapping replacements, such as ch => x and also c => * y, the latter to be used only if the character after c is not * h. in this case, the state[0] table's entry for c would * change c to y and also have a next-state of say n, and the * state[n] entry for h would specify a replacement of the two * bytes yh by x. No backtracking is needed. * * A replacement table may also include the exit actions of a * scanning state table, so some character sequences can * terminate early. * * During replacement, an optional data structure called an * offset map can be updated to reflect each change in length * between source and destination. This offset map can later be * used to map destination-string offsets to corresponding * source-string offsets or vice versa. * * The routines below also have variants in which state-table * entries are all two bytes instead of one byte. This allows * tables with more than 240 total states, but takes up twice as * much space per state. * **/ // Return true if current Tbl pointer is within state0 range // Note that unsigned compare checks both ends of range simultaneously static inline bool InStateZero(const UTF8ScanObj* st, const uint8* Tbl) { const uint8* Tbl0 = &st->state_table[st->state0]; return (static_cast(Tbl - Tbl0) < st->state0_size); } static inline bool InStateZero_2(const UTF8ReplaceObj_2* st, const unsigned short int* Tbl) { const unsigned short int* Tbl0 = &st->state_table[st->state0]; // Word difference, not byte difference return (static_cast(Tbl - Tbl0) < st->state0_size); } // UTF8PropObj, UTF8ScanObj, UTF8ReplaceObj are all typedefs of // UTF8MachineObj. static bool IsPropObj(const UTF8StateMachineObj& obj) { return obj.fast_state == NULL && obj.max_expand == 0; } static bool IsPropObj_2(const UTF8StateMachineObj_2& obj) { return obj.fast_state == NULL && obj.max_expand == 0; } static bool IsScanObj(const UTF8StateMachineObj& obj) { return obj.fast_state != NULL && obj.max_expand == 0; } static bool IsReplaceObj(const UTF8StateMachineObj& obj) { // Normally, obj.fast_state != NULL, but the handwritten tables // in utf8statetable_unittest don't handle fast_states. return obj.max_expand > 0; } static bool IsReplaceObj_2(const UTF8StateMachineObj_2& obj) { return obj.max_expand > 0; } // Look up property of one UTF-8 character and advance over it // Return 0 if input length is zero // Return 0 and advance one byte if input is ill-formed uint8 UTF8GenericProperty(const UTF8PropObj* st, const uint8** src, int* srclen) { if (*srclen <= 0) { return 0; } const uint8* lsrc = *src; const uint8* Tbl_0 = &st->state_table[st->state0]; const uint8* Tbl = Tbl_0; int e; int eshift = st->entry_shift; // Short series of tests faster than switch, optimizes 7-bit ASCII unsigned char c = lsrc[0]; if (static_cast(c) >= 0) { // one byte e = Tbl[c]; *src += 1; *srclen -= 1; } else if (((c & 0xe0) == 0xc0) && (*srclen >= 2)) { // two bytes e = Tbl[c]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[1]]; *src += 2; *srclen -= 2; } else if (((c & 0xf0) == 0xe0) && (*srclen >= 3)) { // three bytes e = Tbl[c]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[1]]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[2]]; *src += 3; *srclen -= 3; }else if (((c & 0xf8) == 0xf0) && (*srclen >= 4)) { // four bytes e = Tbl[c]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[1]]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[2]]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[3]]; *src += 4; *srclen -= 4; } else { // Ill-formed e = 0; *src += 1; *srclen -= 1; } return e; } bool UTF8HasGenericProperty(const UTF8PropObj& st, const char* src) { const uint8* lsrc = reinterpret_cast(src); const uint8* Tbl_0 = &st.state_table[st.state0]; const uint8* Tbl = Tbl_0; int e; int eshift = st.entry_shift; // Short series of tests faster than switch, optimizes 7-bit ASCII unsigned char c = lsrc[0]; if (static_cast(c) >= 0) { // one byte e = Tbl[c]; } else if ((c & 0xe0) == 0xc0) { // two bytes e = Tbl[c]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[1]]; } else if ((c & 0xf0) == 0xe0) { // three bytes e = Tbl[c]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[1]]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[2]]; } else { // four bytes e = Tbl[c]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[1]]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[2]]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[3]]; } return e; } // BigOneByte versions are needed for tables > 240 states, but most // won't need the TwoByte versions. // Internally, to next-to-last offset is multiplied by 16 and the last // offset is relative instead of absolute. // Look up property of one UTF-8 character and advance over it // Return 0 if input length is zero // Return 0 and advance one byte if input is ill-formed uint8 UTF8GenericPropertyBigOneByte(const UTF8PropObj* st, const uint8** src, int* srclen) { if (*srclen <= 0) { return 0; } const uint8* lsrc = *src; const uint8* Tbl_0 = &st->state_table[st->state0]; const uint8* Tbl = Tbl_0; int e; int eshift = st->entry_shift; // Short series of tests faster than switch, optimizes 7-bit ASCII unsigned char c = lsrc[0]; if (static_cast(c) >= 0) { // one byte e = Tbl[c]; *src += 1; *srclen -= 1; } else if (((c & 0xe0) == 0xc0) && (*srclen >= 2)) { // two bytes e = Tbl[c]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[1]]; *src += 2; *srclen -= 2; } else if (((c & 0xf0) == 0xe0) && (*srclen >= 3)) { // three bytes e = Tbl[c]; Tbl = &Tbl_0[e << (eshift + 4)]; // 16x the range e = (reinterpret_cast(Tbl))[lsrc[1]]; Tbl = &Tbl[e << eshift]; // Relative +/- e = Tbl[lsrc[2]]; *src += 3; *srclen -= 3; }else if (((c & 0xf8) == 0xf0) && (*srclen >= 4)) { // four bytes e = Tbl[c]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[1]]; Tbl = &Tbl_0[e << (eshift + 4)]; // 16x the range e = (reinterpret_cast(Tbl))[lsrc[2]]; Tbl = &Tbl[e << eshift]; // Relative +/- e = Tbl[lsrc[3]]; *src += 4; *srclen -= 4; } else { // Ill-formed e = 0; *src += 1; *srclen -= 1; } return e; } // BigOneByte versions are needed for tables > 240 states, but most // won't need the TwoByte versions. bool UTF8HasGenericPropertyBigOneByte(const UTF8PropObj& st, const char* src) { const uint8* lsrc = reinterpret_cast(src); const uint8* Tbl_0 = &st.state_table[st.state0]; const uint8* Tbl = Tbl_0; int e; int eshift = st.entry_shift; // Short series of tests faster than switch, optimizes 7-bit ASCII unsigned char c = lsrc[0]; if (static_cast(c) >= 0) { // one byte e = Tbl[c]; } else if ((c & 0xe0) == 0xc0) { // two bytes e = Tbl[c]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[1]]; } else if ((c & 0xf0) == 0xe0) { // three bytes e = Tbl[c]; Tbl = &Tbl_0[e << (eshift + 4)]; // 16x the range e = (reinterpret_cast(Tbl))[lsrc[1]]; Tbl = &Tbl[e << eshift]; // Relative +/- e = Tbl[lsrc[2]]; } else { // four bytes e = Tbl[c]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[1]]; Tbl = &Tbl_0[e << (eshift + 4)]; // 16x the range e = (reinterpret_cast(Tbl))[lsrc[2]]; Tbl = &Tbl[e << eshift]; // Relative +/- e = Tbl[lsrc[3]]; } return e; } // TwoByte versions are needed for tables > 240 states // Look up property of one UTF-8 character and advance over it // Return 0 if input length is zero // Return 0 and advance one byte if input is ill-formed uint8 UTF8GenericPropertyTwoByte(const UTF8PropObj_2* st, const uint8** src, int* srclen) { if (*srclen <= 0) { return 0; } const uint8* lsrc = *src; const unsigned short* Tbl_0 = &st->state_table[st->state0]; const unsigned short* Tbl = Tbl_0; int e; int eshift = st->entry_shift; // Short series of tests faster than switch, optimizes 7-bit ASCII unsigned char c = lsrc[0]; if (static_cast(c) >= 0) { // one byte e = Tbl[c]; *src += 1; *srclen -= 1; } else if (((c & 0xe0) == 0xc0) && (*srclen >= 2)) { // two bytes e = Tbl[c]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[1]]; *src += 2; *srclen -= 2; } else if (((c & 0xf0) == 0xe0) && (*srclen >= 3)) { // three bytes e = Tbl[c]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[1]]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[2]]; *src += 3; *srclen -= 3; }else if (((c & 0xf8) == 0xf0) && (*srclen >= 4)) { // four bytes e = Tbl[c]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[1]]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[2]]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[3]]; *src += 4; *srclen -= 4; } else { // Ill-formed e = 0; *src += 1; *srclen -= 1; } return e; } // TwoByte versions are needed for tables > 240 states bool UTF8HasGenericPropertyTwoByte(const UTF8PropObj_2& st, const char* src) { const uint8* lsrc = reinterpret_cast(src); const unsigned short* Tbl_0 = &st.state_table[st.state0]; const unsigned short* Tbl = Tbl_0; int e; int eshift = st.entry_shift; // Short series of tests faster than switch, optimizes 7-bit ASCII unsigned char c = lsrc[0]; if (static_cast(c) >= 0) { // one byte e = Tbl[c]; } else if ((c & 0xe0) == 0xc0) { // two bytes e = Tbl[c]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[1]]; } else if ((c & 0xf0) == 0xe0) { // three bytes e = Tbl[c]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[1]]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[2]]; } else { // four bytes e = Tbl[c]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[1]]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[2]]; Tbl = &Tbl_0[e << eshift]; e = Tbl[lsrc[3]]; } return e; } // Approximate speeds on 2.8 GHz Pentium 4: // GenericScan 1-byte loop 300 MB/sec * // GenericScan 4-byte loop 1200 MB/sec // GenericScan 8-byte loop 2400 MB/sec * // GenericScanFastAscii 4-byte loop 3000 MB/sec // GenericScanFastAscii 8-byte loop 3200 MB/sec * // // * Implemented below. FastAscii loop is memory-bandwidth constrained. // Scan a UTF-8 stringpiece based on state table. // Always scan complete UTF-8 characters // Set number of bytes scanned. Return reason for exiting int UTF8GenericScan(const UTF8ScanObj* st, const StringPiece& str, int* bytes_consumed) { int eshift = st->entry_shift; // 6 (space optimized) or 8 // int nEntries = (1 << eshift); // 64 or 256 entries per state const uint8* isrc = reinterpret_cast(str.data()); const uint8* src = isrc; const int len = str.length(); const uint8* srclimit = isrc + len; const uint8* srclimit8 = srclimit - 7; *bytes_consumed = 0; if (len == 0) return kExitOK; const uint8* Tbl_0 = &st->state_table[st->state0]; DoAgain: // Do state-table scan int e = 0; uint8 c; // Do fast for groups of 8 identity bytes. // This covers a lot of 7-bit ASCII ~8x faster than the 1-byte loop, // including slowing slightly on cr/lf/ht //---------------------------- const uint8* Tbl2 = &st->fast_state[0]; uint32 losub = st->losub; uint32 hiadd = st->hiadd; while (src < srclimit8) { const uint32* src32 = reinterpret_cast(src); uint32 s0123 = UNALIGNED_LOAD32(&src32[0]); uint32 s4567 = UNALIGNED_LOAD32(&src32[1]); src += 8; // This is a fast range check for all bytes in [lowsub..0x80-hiadd) uint32 temp = (s0123 - losub) | (s0123 + hiadd) | (s4567 - losub) | (s4567 + hiadd); if ((temp & 0x80808080) != 0) { // We typically end up here on cr/lf/ht; src was incremented int e0123 = (Tbl2[src[-8]] | Tbl2[src[-7]]) | (Tbl2[src[-6]] | Tbl2[src[-5]]); if (e0123 != 0) {src -= 8; break;} // Exit on Non-interchange e0123 = (Tbl2[src[-4]] | Tbl2[src[-3]]) | (Tbl2[src[-2]] | Tbl2[src[-1]]); if (e0123 != 0) {src -= 4; break;} // Exit on Non-interchange // Else OK, go around again } } //---------------------------- // Byte-at-a-time scan //---------------------------- const uint8* Tbl = Tbl_0; while (src < srclimit) { c = *src; e = Tbl[c]; src++; if (e >= kExitIllegalStructure) {break;} Tbl = &Tbl_0[e << eshift]; } //---------------------------- // Exit possibilities: // Some exit code, !state0, back up over last char // Some exit code, state0, back up one byte exactly // source consumed, !state0, back up over partial char // source consumed, state0, exit OK // For illegal byte in state0, avoid backup up over PREVIOUS char // For truncated last char, back up to beginning of it if (e >= kExitIllegalStructure) { // Back up over exactly one byte of rejected/illegal UTF-8 character src--; // Back up more if needed if (!InStateZero(st, Tbl)) { do {src--;} while ((src > isrc) && ((src[0] & 0xc0) == 0x80)); } } else if (!InStateZero(st, Tbl)) { // Back up over truncated UTF-8 character e = kExitIllegalStructure; do {src--;} while ((src > isrc) && ((src[0] & 0xc0) == 0x80)); } else { // Normal termination, source fully consumed e = kExitOK; } if (e == kExitDoAgain) { // Loop back up to the fast scan goto DoAgain; } *bytes_consumed = src - isrc; return e; } // Scan a UTF-8 stringpiece based on state table. // Always scan complete UTF-8 characters // Set number of bytes scanned. Return reason for exiting // OPTIMIZED for case of 7-bit ASCII 0000..007f all valid int UTF8GenericScanFastAscii(const UTF8ScanObj* st, const StringPiece& str, int* bytes_consumed) { const uint8* isrc = reinterpret_cast(str.data()); const uint8* src = isrc; const int len = str.length(); const uint8* srclimit = isrc + len; const uint8* srclimit8 = srclimit - 7; *bytes_consumed = 0; if (len == 0) return kExitOK; int n; int rest_consumed; int exit_reason; do { // Skip 8 bytes of ASCII at a whack; no endianness issue while ((src < srclimit8) && (((UNALIGNED_LOAD32(&reinterpret_cast(src)[0]) | UNALIGNED_LOAD32(&reinterpret_cast(src)[1])) & 0x80808080) == 0)) { src += 8; } // Run state table on the rest n = src - isrc; StringPiece str2(str.data() + n, str.length() - n); exit_reason = UTF8GenericScan(st, str2, &rest_consumed); src += rest_consumed; } while ( exit_reason == kExitDoAgain ); *bytes_consumed = src - isrc; return exit_reason; } // Hack to change halfwidth katakana to match an old UTF8CharToLower() // Return number of src bytes skipped static int DoSpecialFixup(const unsigned char c, const unsigned char** srcp, const unsigned char* srclimit, unsigned char** dstp, unsigned char* dstlimit) { return 0; } // Scan a UTF-8 stringpiece based on state table, copying to output stringpiece // and doing text replacements. // DO NOT CALL DIRECTLY. Use UTF8GenericReplace() below // Needs caller to loop on kExitDoAgain static int UTF8GenericReplaceInternal(const UTF8ReplaceObj* st, const StringPiece& istr, StringPiece& ostr, bool is_plain_text, int* bytes_consumed, int* bytes_filled, int* chars_changed, OffsetMap* offsetmap) { int eshift = st->entry_shift; int nEntries = (1 << eshift); // 64 or 256 entries per state const uint8* isrc = reinterpret_cast(istr.data()); const int ilen = istr.length(); const uint8* copystart = isrc; const uint8* src = isrc; const uint8* srclimit = src + ilen; *bytes_consumed = 0; *bytes_filled = 0; *chars_changed = 0; const uint8* odst = reinterpret_cast(ostr.data()); const int olen = ostr.length(); uint8* dst = const_cast(odst); uint8* dstlimit = dst + olen; int total_changed = 0; // Invariant condition during replacements: // remaining dst size >= remaining src size if ((dstlimit - dst) < (srclimit - src)) { if (offsetmap != NULL) { offsetmap->Copy(src - copystart); copystart = src; } return kExitDstSpaceFull; } const uint8* Tbl_0 = &st->state_table[st->state0]; Do_state_table: // Do state-table scan, copying as we go const uint8* Tbl = Tbl_0; int e = 0; uint8 c = 0; Do_state_table_newe: //---------------------------- while (src < srclimit) { c = *src; e = Tbl[c]; *dst = c; src++; dst++; if (e >= kExitIllegalStructure) {break;} Tbl = &Tbl_0[e << eshift]; } //---------------------------- // Exit possibilities: // Replacement code, do the replacement and loop // Some other exit code, state0, back up one byte exactly // Some other exit code, !state0, back up over last char // source consumed, state0, exit OK // source consumed, !state0, back up over partial char // For illegal byte in state0, avoid backup up over PREVIOUS char // For truncated last char, back up to beginning of it if (e >= kExitIllegalStructure) { // Switch on exit code; most loop back to top int offset = 0; switch (e) { // These all make the output string the same size or shorter // No checking needed case kExitReplace31: // del 2, add 1 bytes to change dst -= 2; if (offsetmap != NULL) { offsetmap->Copy(src - copystart - 2); offsetmap->Delete(2); copystart = src; } dst[-1] = (unsigned char)Tbl[c + (nEntries * 1)]; total_changed++; goto Do_state_table; case kExitReplace32: // del 3, add 2 bytes to change dst--; if (offsetmap != NULL) { offsetmap->Copy(src - copystart - 1); offsetmap->Delete(1); copystart = src; } dst[-2] = (unsigned char)Tbl[c + (nEntries * 2)]; dst[-1] = (unsigned char)Tbl[c + (nEntries * 1)]; total_changed++; goto Do_state_table; case kExitReplace21: // del 2, add 1 bytes to change dst--; if (offsetmap != NULL) { offsetmap->Copy(src - copystart - 1); offsetmap->Delete(1); copystart = src; } dst[-1] = (unsigned char)Tbl[c + (nEntries * 1)]; total_changed++; goto Do_state_table; case kExitReplace3: // update 3 bytes to change dst[-3] = (unsigned char)Tbl[c + (nEntries * 3)]; // Fall into next case case kExitReplace2: // update 2 bytes to change dst[-2] = (unsigned char)Tbl[c + (nEntries * 2)]; // Fall into next case case kExitReplace1: // update 1 byte to change dst[-1] = (unsigned char)Tbl[c + (nEntries * 1)]; total_changed++; goto Do_state_table; case kExitReplace1S0: // update 1 byte to change, 256-entry state dst[-1] = (unsigned char)Tbl[c + (256 * 1)]; total_changed++; goto Do_state_table; // These can make the output string longer than the input case kExitReplaceOffset2: if ((nEntries != 256) && InStateZero(st, Tbl)) { // For space-optimized table, we need multiples of 256 bytes // in state0 and multiples of nEntries in other states offset += ((unsigned char)Tbl[c + (256 * 2)] << 8); } else { offset += ((unsigned char)Tbl[c + (nEntries * 2)] << 8); } // Fall into next case case kExitSpecial: // Apply special fixups [read: hacks] case kExitReplaceOffset1: if ((nEntries != 256) && InStateZero(st, Tbl)) { // For space-optimized table, we need multiples of 256 bytes // in state0 and multiples of nEntries in other states offset += (unsigned char)Tbl[c + (256 * 1)]; } else { offset += (unsigned char)Tbl[c + (nEntries * 1)]; } { const RemapEntry* re = &st->remap_base[offset]; int del_len = re->delete_bytes & ~kReplaceAndResumeFlag; int add_len = re->add_bytes & ~kHtmlPlaintextFlag; // Special-case non-HTML replacement of five sensitive entities // " & ' < > // 0022 0026 0027 003c 003e // A replacement creating one of these is expressed as a pair of // entries, one for HTML output and one for plaintext output. // The first of the pair has the high bit of add_bytes set. if (re->add_bytes & kHtmlPlaintextFlag) { // Use this entry for plain text if (!is_plain_text) { // Use very next entry for HTML text (same back/delete length) re = &st->remap_base[offset + 1]; add_len = re->add_bytes & ~kHtmlPlaintextFlag; } } int string_offset = re->bytes_offset; // After the replacement, need (dstlimit - newdst) >= (srclimit - src) uint8* newdst = dst - del_len + add_len; if ((dstlimit - newdst) < (srclimit - src)) { // Won't fit; don't do the replacement. Caller may realloc and retry e = kExitDstSpaceFull; break; // exit, backing up over this char for later retry } dst -= del_len; memcpy(dst, &st->remap_string[string_offset], add_len); dst += add_len; total_changed++; if (offsetmap != NULL) { if (add_len > del_len) { offsetmap->Copy(src - copystart); offsetmap->Insert(add_len - del_len); copystart = src; } else if (add_len < del_len) { offsetmap->Copy(src - copystart + add_len - del_len); offsetmap->Delete(del_len - add_len); copystart = src; } } if (re->delete_bytes & kReplaceAndResumeFlag) { // There is a non-zero target state at the end of the // replacement string e = st->remap_string[string_offset + add_len]; Tbl = &Tbl_0[e << eshift]; goto Do_state_table_newe; } } if (e == kExitRejectAlt) {break;} if (e != kExitSpecial) {goto Do_state_table;} // case kExitSpecial: // Apply special fixups [read: hacks] // In this routine, do either UTF8CharToLower() // fullwidth/halfwidth mapping or // voiced mapping or // semi-voiced mapping // First, do EXIT_REPLACE_OFFSET1 action (above) // Second: do additional code fixup { int srcdel = DoSpecialFixup(c, &src, srclimit, &dst, dstlimit); if (offsetmap != NULL) { if (srcdel != 0) { offsetmap->Copy(src - copystart - srcdel); offsetmap->Delete(srcdel); copystart = src; } } } goto Do_state_table; case kExitIllegalStructure: // structurally illegal byte; quit case kExitReject: // NUL or illegal code encountered; quit case kExitRejectAlt: // Apply replacement, then exit default: // and all other exits break; } // End switch (e) // Exit possibilities: // Some other exit code, state0, back up one byte exactly // Some other exit code, !state0, back up over last char // Back up over exactly one byte of rejected/illegal UTF-8 character src--; dst--; // Back up more if needed if (!InStateZero(st, Tbl)) { do {src--;dst--;} while ((src > isrc) && ((src[0] & 0xc0) == 0x80)); } } else if (!InStateZero(st, Tbl)) { // src >= srclimit, !state0 // Back up over truncated UTF-8 character e = kExitIllegalStructure; do {src--; dst--;} while ((src > isrc) && ((src[0] & 0xc0) == 0x80)); } else { // src >= srclimit, state0 // Normal termination, source fully consumed e = kExitOK; } if (offsetmap != NULL) { if (src > copystart) { offsetmap->Copy(src - copystart); copystart = src; } } // Possible return values here: // kExitDstSpaceFull caller may realloc and retry from middle // kExitIllegalStructure caller my overwrite/truncate // kExitOK all done and happy // kExitReject caller may overwrite/truncate // kExitDoAgain LOOP NOT DONE; caller must retry from middle // (may do fast ASCII loop first) // kExitPlaceholder -unused- // kExitNone -unused- *bytes_consumed = src - isrc; *bytes_filled = dst - odst; *chars_changed = total_changed; return e; } // TwoByte versions are needed for tables > 240 states, such // as the table for full Unicode 4.1 canonical + compatibility mapping // Scan a UTF-8 stringpiece based on state table with two-byte entries, // copying to output stringpiece // and doing text replacements. // DO NOT CALL DIRECTLY. Use UTF8GenericReplace() below // Needs caller to loop on kExitDoAgain static int UTF8GenericReplaceInternalTwoByte(const UTF8ReplaceObj_2* st, const StringPiece& istr, StringPiece& ostr, bool is_plain_text, int* bytes_consumed, int* bytes_filled, int* chars_changed, OffsetMap* offsetmap) { int eshift = st->entry_shift; int nEntries = (1 << eshift); // 64 or 256 entries per state const uint8* isrc = reinterpret_cast(istr.data()); const int ilen = istr.length(); const uint8* copystart = isrc; const uint8* src = isrc; const uint8* srclimit = src + ilen; *bytes_consumed = 0; *bytes_filled = 0; *chars_changed = 0; const uint8* odst = reinterpret_cast(ostr.data()); const int olen = ostr.length(); uint8* dst = const_cast(odst); uint8* dstlimit = dst + olen; *chars_changed = 0; int total_changed = 0; int src_lll = srclimit - src; int dst_lll = dstlimit - dst; // Invariant condition during replacements: // remaining dst size >= remaining src size if ((dstlimit - dst) < (srclimit - src)) { if (offsetmap != NULL) { offsetmap->Copy(src - copystart); copystart = src; } return kExitDstSpaceFull_2; } const unsigned short* Tbl_0 = &st->state_table[st->state0]; Do_state_table_2: // Do state-table scan, copying as we go const unsigned short* Tbl = Tbl_0; int e = 0; uint8 c = 0; Do_state_table_newe_2: //---------------------------- while (src < srclimit) { c = *src; e = Tbl[c]; *dst = c; src++; dst++; if (e >= kExitIllegalStructure_2) {break;} Tbl = &Tbl_0[e << eshift]; } //---------------------------- src_lll = src - isrc; dst_lll = dst - odst; // Exit possibilities: // Replacement code, do the replacement and loop // Some other exit code, state0, back up one byte exactly // Some other exit code, !state0, back up over last char // source consumed, state0, exit OK // source consumed, !state0, back up over partial char // For illegal byte in state0, avoid backup up over PREVIOUS char // For truncated last char, back up to beginning of it if (e >= kExitIllegalStructure_2) { // Switch on exit code; most loop back to top int offset = 0; switch (e) { // These all make the output string the same size or shorter // No checking needed case kExitReplace31_2: // del 2, add 1 bytes to change dst -= 2; if (offsetmap != NULL) { offsetmap->Copy(src - copystart - 2); offsetmap->Delete(2); copystart = src; } dst[-1] = (unsigned char)(Tbl[c + (nEntries * 1)] & 0xff); total_changed++; goto Do_state_table_2; case kExitReplace32_2: // del 3, add 2 bytes to change dst--; if (offsetmap != NULL) { offsetmap->Copy(src - copystart - 1); offsetmap->Delete(1); copystart = src; } dst[-2] = (unsigned char)(Tbl[c + (nEntries * 1)] >> 8 & 0xff); dst[-1] = (unsigned char)(Tbl[c + (nEntries * 1)] & 0xff); total_changed++; goto Do_state_table_2; case kExitReplace21_2: // del 2, add 1 bytes to change dst--; if (offsetmap != NULL) { offsetmap->Copy(src - copystart - 1); offsetmap->Delete(1); copystart = src; } dst[-1] = (unsigned char)(Tbl[c + (nEntries * 1)] & 0xff); total_changed++; goto Do_state_table_2; case kExitReplace3_2: // update 3 bytes to change dst[-3] = (unsigned char)(Tbl[c + (nEntries * 2)] & 0xff); // Fall into next case case kExitReplace2_2: // update 2 bytes to change dst[-2] = (unsigned char)(Tbl[c + (nEntries * 1)] >> 8 & 0xff); // Fall into next case case kExitReplace1_2: // update 1 byte to change dst[-1] = (unsigned char)(Tbl[c + (nEntries * 1)] & 0xff); total_changed++; goto Do_state_table_2; case kExitReplace1S0_2: // update 1 byte to change, 256-entry state dst[-1] = (unsigned char)(Tbl[c + (256 * 1)] & 0xff); total_changed++; goto Do_state_table_2; // These can make the output string longer than the input case kExitReplaceOffset2_2: if ((nEntries != 256) && InStateZero_2(st, Tbl)) { // For space-optimized table, we need multiples of 256 bytes // in state0 and multiples of nEntries in other states offset += ((unsigned char)(Tbl[c + (256 * 1)] >> 8 & 0xff) << 8); } else { offset += ((unsigned char)(Tbl[c + (nEntries * 1)] >> 8 & 0xff) << 8); } // Fall into next case case kExitReplaceOffset1_2: if ((nEntries != 256) && InStateZero_2(st, Tbl)) { // For space-optimized table, we need multiples of 256 bytes // in state0 and multiples of nEntries in other states offset += (unsigned char)(Tbl[c + (256 * 1)] & 0xff); } else { offset += (unsigned char)(Tbl[c + (nEntries * 1)] & 0xff); } { const RemapEntry* re = &st->remap_base[offset]; int del_len = re->delete_bytes & ~kReplaceAndResumeFlag; int add_len = re->add_bytes & ~kHtmlPlaintextFlag; // Special-case non-HTML replacement of five sensitive entities // " & ' < > // 0022 0026 0027 003c 003e // A replacement creating one of these is expressed as a pair of // entries, one for HTML output and one for plaintext output. // The first of the pair has the high bit of add_bytes set. if (re->add_bytes & kHtmlPlaintextFlag) { // Use this entry for plain text if (!is_plain_text) { // Use very next entry for HTML text (same back/delete length) re = &st->remap_base[offset + 1]; add_len = re->add_bytes & ~kHtmlPlaintextFlag; } } // After the replacement, need (dstlimit - dst) >= (srclimit - src) int string_offset = re->bytes_offset; // After the replacement, need (dstlimit - newdst) >= (srclimit - src) uint8* newdst = dst - del_len + add_len; if ((dstlimit - newdst) < (srclimit - src)) { // Won't fit; don't do the replacement. Caller may realloc and retry e = kExitDstSpaceFull_2; break; // exit, backing up over this char for later retry } dst -= del_len; memcpy(dst, &st->remap_string[string_offset], add_len); dst += add_len; if (offsetmap != NULL) { if (add_len > del_len) { offsetmap->Copy(src - copystart); offsetmap->Insert(add_len - del_len); copystart = src; } else if (add_len < del_len) { offsetmap->Copy(src - copystart + add_len - del_len); offsetmap->Delete(del_len - add_len); copystart = src; } } if (re->delete_bytes & kReplaceAndResumeFlag) { // There is a two-byte non-zero target state at the end of the // replacement string uint8 c1 = st->remap_string[string_offset + add_len]; uint8 c2 = st->remap_string[string_offset + add_len + 1]; e = (c1 << 8) | c2; Tbl = &Tbl_0[e << eshift]; total_changed++; goto Do_state_table_newe_2; } } total_changed++; if (e == kExitRejectAlt_2) {break;} goto Do_state_table_2; case kExitSpecial_2: // NO special fixups [read: hacks] case kExitIllegalStructure_2: // structurally illegal byte; quit case kExitReject_2: // NUL or illegal code encountered; quit // and all other exits default: break; } // End switch (e) // Exit possibilities: // Some other exit code, state0, back up one byte exactly // Some other exit code, !state0, back up over last char // Back up over exactly one byte of rejected/illegal UTF-8 character src--; dst--; // Back up more if needed if (!InStateZero_2(st, Tbl)) { do {src--;dst--;} while ((src > isrc) && ((src[0] & 0xc0) == 0x80)); } } else if (!InStateZero_2(st, Tbl)) { // src >= srclimit, !state0 // Back up over truncated UTF-8 character e = kExitIllegalStructure_2; do {src--; dst--;} while ((src > isrc) && ((src[0] & 0xc0) == 0x80)); } else { // src >= srclimit, state0 // Normal termination, source fully consumed e = kExitOK_2; } if (offsetmap != NULL) { if (src > copystart) { offsetmap->Copy(src - copystart); copystart = src; } } // Possible return values here: // kExitDstSpaceFull_2 caller may realloc and retry from middle // kExitIllegalStructure_2 caller my overwrite/truncate // kExitOK_2 all done and happy // kExitReject_2 caller may overwrite/truncate // kExitDoAgain_2 LOOP NOT DONE; caller must retry from middle // (may do fast ASCII loop first) // kExitPlaceholder_2 -unused- // kExitNone_2 -unused- *bytes_consumed = src - isrc; *bytes_filled = dst - odst; *chars_changed = total_changed; return e; } // Scan a UTF-8 stringpiece based on state table, copying to output stringpiece // and doing text replacements. // Also writes an optional OffsetMap. Pass NULL to skip writing one. // Always scan complete UTF-8 characters // Set number of bytes consumed from input, number filled to output. // Return reason for exiting int UTF8GenericReplace(const UTF8ReplaceObj* st, const StringPiece& istr, StringPiece& ostr, bool is_plain_text, int* bytes_consumed, int* bytes_filled, int* chars_changed, OffsetMap* offsetmap) { StringPiece local_istr(istr.data(), istr.length()); StringPiece local_ostr(ostr.data(), ostr.length()); int total_consumed = 0; int total_filled = 0; int total_changed = 0; int local_bytes_consumed, local_bytes_filled, local_chars_changed; int e; do { e = UTF8GenericReplaceInternal(st, local_istr, local_ostr, is_plain_text, &local_bytes_consumed, &local_bytes_filled, &local_chars_changed, offsetmap); local_istr.remove_prefix(local_bytes_consumed); local_ostr.remove_prefix(local_bytes_filled); total_consumed += local_bytes_consumed; total_filled += local_bytes_filled; total_changed += local_chars_changed; } while ( e == kExitDoAgain ); *bytes_consumed = total_consumed; *bytes_filled = total_filled; *chars_changed = total_changed; return e; } // Older version without offsetmap int UTF8GenericReplace(const UTF8ReplaceObj* st, const StringPiece& istr, StringPiece& ostr, bool is_plain_text, int* bytes_consumed, int* bytes_filled, int* chars_changed) { return UTF8GenericReplace(st, istr, ostr, is_plain_text, bytes_consumed, bytes_filled, chars_changed, NULL); } // Older version without is_plain_text or offsetmap int UTF8GenericReplace(const UTF8ReplaceObj* st, const StringPiece& istr, StringPiece& ostr, int* bytes_consumed, int* bytes_filled, int* chars_changed) { bool is_plain_text = false; return UTF8GenericReplace(st, istr, ostr, is_plain_text, bytes_consumed, bytes_filled, chars_changed, NULL); } // Scan a UTF-8 stringpiece based on state table with two-byte entries, // copying to output stringpiece // and doing text replacements. // Also writes an optional OffsetMap. Pass NULL to skip writing one. // Always scan complete UTF-8 characters // Set number of bytes consumed from input, number filled to output. // Return reason for exiting int UTF8GenericReplaceTwoByte(const UTF8ReplaceObj_2* st, const StringPiece& istr, StringPiece& ostr, bool is_plain_text, int* bytes_consumed, int* bytes_filled, int* chars_changed, OffsetMap* offsetmap) { StringPiece local_istr(istr.data(), istr.length()); StringPiece local_ostr(ostr.data(), ostr.length()); int total_consumed = 0; int total_filled = 0; int total_changed = 0; int local_bytes_consumed, local_bytes_filled, local_chars_changed; int e; do { e = UTF8GenericReplaceInternalTwoByte(st, local_istr, local_ostr, is_plain_text, &local_bytes_consumed, &local_bytes_filled, &local_chars_changed, offsetmap); local_istr.remove_prefix(local_bytes_consumed); local_ostr.remove_prefix(local_bytes_filled); total_consumed += local_bytes_consumed; total_filled += local_bytes_filled; total_changed += local_chars_changed; } while ( e == kExitDoAgain_2 ); *bytes_consumed = total_consumed; *bytes_filled = total_filled; *chars_changed = total_changed; return e - kExitOK_2 + kExitOK; } // Older version without offsetmap int UTF8GenericReplaceTwoByte(const UTF8ReplaceObj_2* st, const StringPiece& istr, StringPiece& ostr, bool is_plain_text, int* bytes_consumed, int* bytes_filled, int* chars_changed) { return UTF8GenericReplaceTwoByte(st, istr, ostr, is_plain_text, bytes_consumed, bytes_filled, chars_changed, NULL); } // Older version without is_plain_text or offsetmap int UTF8GenericReplaceTwoByte(const UTF8ReplaceObj_2* st, const StringPiece& istr, StringPiece& ostr, int* bytes_consumed, int* bytes_filled, int* chars_changed) { bool is_plain_text = false; return UTF8GenericReplaceTwoByte(st, istr, ostr, is_plain_text, bytes_consumed, bytes_filled, chars_changed, NULL); } // Adjust a stringpiece to encompass complete UTF-8 characters. // The data pointer will be increased by 0..3 bytes to get to a character // boundary, and the length will then be decreased by 0..3 bytes // to encompass the last complete character. void UTF8TrimToChars(StringPiece* istr) { const char* src = istr->data(); int len = istr->length(); // Exit if empty string if (len == 0) { return; } // Exit on simple, common case if ( ((src[0] & 0xc0) != 0x80) && (static_cast(src[len - 1]) >= 0) ) { // First byte is not a continuation and last byte is 7-bit ASCII -- done return; } // Adjust the back end, len > 0 const char* srclimit = src + len; // Backscan over any ending continuation bytes to find last char start const char* s = srclimit - 1; // Last byte of the string while ((src <= s) && ((*s & 0xc0) == 0x80)) { s--; } // Include entire last char if it fits if (src <= s) { int last_char_len = UTF8OneCharLen(s); if (s + last_char_len <= srclimit) { // Last char fits, so include it, else exclude it s += last_char_len; } } if (s != srclimit) { // s is one byte beyond the last full character, if any istr->remove_suffix(srclimit - s); // Exit if now empty string if (istr->length() == 0) { return; } } // Adjust the front end, len > 0 len = istr->length(); srclimit = src + len; s = src; // First byte of the string // Scan over any beginning continuation bytes to find first char start while ((s < srclimit) && ((*s & 0xc0) == 0x80)) { s++; } if (s != src) { // s is at the first full character, if any istr->remove_prefix(s - src); } } } // End namespace CLD2