// Copyright (C) 2012 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_FINE_HOG_IMaGE_Hh_ #define DLIB_FINE_HOG_IMaGE_Hh_ #include "fine_hog_image_abstract.h" #include "../array2d.h" #include "../matrix.h" #include "hog.h" namespace dlib { template < unsigned long cell_size_, unsigned long block_size_, unsigned long pixel_stride_, unsigned char num_orientation_bins_, int gradient_type_ > class fine_hog_image : noncopyable { COMPILE_TIME_ASSERT(cell_size_ > 1); COMPILE_TIME_ASSERT(block_size_ > 0); COMPILE_TIME_ASSERT(pixel_stride_ > 0); COMPILE_TIME_ASSERT(num_orientation_bins_ > 0); COMPILE_TIME_ASSERT( gradient_type_ == hog_signed_gradient || gradient_type_ == hog_unsigned_gradient); public: const static unsigned long cell_size = cell_size_; const static unsigned long block_size = block_size_; const static unsigned long pixel_stride = pixel_stride_; const static unsigned long num_orientation_bins = num_orientation_bins_; const static int gradient_type = gradient_type_; const static long min_size = cell_size*block_size+2; typedef matrix<double, block_size*block_size*num_orientation_bins, 1> descriptor_type; fine_hog_image ( ) : num_block_rows(0), num_block_cols(0) {} void clear ( ) { num_block_rows = 0; num_block_cols = 0; hist_counts.clear(); } void copy_configuration ( const fine_hog_image& ){} template < typename image_type > inline void load ( const image_type& img ) { COMPILE_TIME_ASSERT( pixel_traits<typename image_traits<image_type>::pixel_type>::has_alpha == false ); load_impl(mat(img)); } inline void unload( ) { clear(); } inline unsigned long size ( ) const { return static_cast<unsigned long>(nr()*nc()); } inline long nr ( ) const { return num_block_rows; } inline long nc ( ) const { return num_block_cols; } long get_num_dimensions ( ) const { return block_size*block_size*num_orientation_bins; } inline const descriptor_type& operator() ( long row, long col ) const { // make sure requires clause is not broken DLIB_ASSERT( 0 <= row && row < nr() && 0 <= col && col < nc(), "\t descriptor_type fine_hog_image::operator()()" << "\n\t invalid row or col argument" << "\n\t row: " << row << "\n\t col: " << col << "\n\t nr(): " << nr() << "\n\t nc(): " << nc() << "\n\t this: " << this ); row *= pixel_stride; col *= pixel_stride; des = 0; unsigned long off = 0; for (unsigned long r = 0; r < block_size; ++r) { for (unsigned long c = 0; c < block_size; ++c) { for (unsigned long rr = 0; rr < cell_size; ++rr) { for (unsigned long cc = 0; cc < cell_size; ++cc) { const histogram_count& hist = hist_counts[row + r*cell_size + rr][col + c*cell_size + cc]; des(off + hist.quantized_angle_lower) += hist.lower_strength; des(off + hist.quantized_angle_upper) += hist.upper_strength; } } off += num_orientation_bins; } } des /= length(des) + 1e-8; return des; } const rectangle get_block_rect ( long row, long col ) const { row *= pixel_stride; col *= pixel_stride; // do this to account for the 1 pixel padding we use all around the image ++row; ++col; return rectangle(col, row, col+cell_size*block_size-1, row+cell_size*block_size-1); } const point image_to_feat_space ( const point& p ) const { const long border_size = 1 + cell_size*block_size/2; return (p-point(border_size,border_size))/(long)pixel_stride; } const rectangle image_to_feat_space ( const rectangle& rect ) const { return rectangle(image_to_feat_space(rect.tl_corner()), image_to_feat_space(rect.br_corner())); } const point feat_to_image_space ( const point& p ) const { const long border_size = 1 + cell_size*block_size/2; return p*(long)pixel_stride + point(border_size,border_size); } const rectangle feat_to_image_space ( const rectangle& rect ) const { return rectangle(feat_to_image_space(rect.tl_corner()), feat_to_image_space(rect.br_corner())); } // these _PRIVATE_ functions are only here as a workaround for a bug in visual studio 2005. void _PRIVATE_serialize (std::ostream& out) const { // serialize hist_counts serialize(hist_counts.nc(),out); serialize(hist_counts.nr(),out); hist_counts.reset(); while (hist_counts.move_next()) hist_counts.element().serialize(out); hist_counts.reset(); serialize(num_block_rows, out); serialize(num_block_cols, out); } void _PRIVATE_deserialize (std::istream& in ) { // deserialize item.hist_counts long nc, nr; deserialize(nc,in); deserialize(nr,in); hist_counts.set_size(nr,nc); while (hist_counts.move_next()) hist_counts.element().deserialize(in); hist_counts.reset(); deserialize(num_block_rows, in); deserialize(num_block_cols, in); } private: template < typename image_type > void load_impl ( const image_type& img ) { // Note that we keep a border of 1 pixel all around the image so that we don't have // to worry about running outside the image when computing the horizontal and vertical // gradients. // check if the window is just too small if (img.nr() < min_size || img.nc() < min_size) { // If the image is smaller than our windows then there aren't any descriptors at all! num_block_rows = 0; num_block_cols = 0; hist_counts.clear(); return; } hist_counts.set_size(img.nr()-2, img.nc()-2); for (long r = 0; r < hist_counts.nr(); ++r) { for (long c = 0; c < hist_counts.nc(); ++c) { unsigned long left; unsigned long right; unsigned long top; unsigned long bottom; assign_pixel(left, img(r+1,c)); assign_pixel(right, img(r+1,c+2)); assign_pixel(top, img(r ,c+1)); assign_pixel(bottom, img(r+2,c+1)); double grad_x = (long)right-(long)left; double grad_y = (long)top-(long)bottom; // obtain the angle of the gradient. Make sure it is scaled between 0 and 1. double angle = std::max(0.0, std::atan2(grad_y, grad_x)/pi + 1)/2; if (gradient_type == hog_unsigned_gradient) { angle *= 2; if (angle >= 1) angle -= 1; } // now scale angle to between 0 and num_orientation_bins angle *= num_orientation_bins; const double strength = std::sqrt(grad_y*grad_y + grad_x*grad_x); unsigned char quantized_angle_lower = static_cast<unsigned char>(std::floor(angle)); unsigned char quantized_angle_upper = static_cast<unsigned char>(std::ceil(angle)); quantized_angle_lower %= num_orientation_bins; quantized_angle_upper %= num_orientation_bins; const double angle_split = (angle-std::floor(angle)); const double upper_strength = angle_split*strength; const double lower_strength = (1-angle_split)*strength; // Stick into gradient counts. Note that we linearly interpolate between neighboring // histogram buckets. hist_counts[r][c].quantized_angle_lower = quantized_angle_lower; hist_counts[r][c].quantized_angle_upper = quantized_angle_upper; hist_counts[r][c].lower_strength = lower_strength; hist_counts[r][c].upper_strength = upper_strength; } } // Now figure out how many feature extraction blocks we should have. num_block_rows = (hist_counts.nr() - block_size*cell_size + 1)/(long)pixel_stride; num_block_cols = (hist_counts.nc() - block_size*cell_size + 1)/(long)pixel_stride; } struct histogram_count { unsigned char quantized_angle_lower; unsigned char quantized_angle_upper; float lower_strength; float upper_strength; void serialize(std::ostream& out) const { dlib::serialize(quantized_angle_lower, out); dlib::serialize(quantized_angle_upper, out); dlib::serialize(lower_strength, out); dlib::serialize(upper_strength, out); } void deserialize(std::istream& in) { dlib::deserialize(quantized_angle_lower, in); dlib::deserialize(quantized_angle_upper, in); dlib::deserialize(lower_strength, in); dlib::deserialize(upper_strength, in); } }; array2d<histogram_count> hist_counts; mutable descriptor_type des; long num_block_rows; long num_block_cols; }; // ---------------------------------------------------------------------------------------- template < unsigned long T1, unsigned long T2, unsigned long T3, unsigned char T4, int T5 > void serialize ( const fine_hog_image<T1,T2,T3,T4,T5>& item, std::ostream& out ) { item._PRIVATE_serialize(out); } template < unsigned long T1, unsigned long T2, unsigned long T3, unsigned char T4, int T5 > void deserialize ( fine_hog_image<T1,T2,T3,T4,T5>& item, std::istream& in ) { item._PRIVATE_deserialize(in); } // ---------------------------------------------------------------------------------------- } #endif // DLIB_FINE_HOG_IMaGE_Hh_