// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "codegen.h" #include "macro-assembler.h" namespace v8 { namespace internal { // ------------------------------------------------------------------------- // Platform-specific RuntimeCallHelper functions. void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { masm->EnterFrame(StackFrame::INTERNAL); ASSERT(!masm->has_frame()); masm->set_has_frame(true); } void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { masm->LeaveFrame(StackFrame::INTERNAL); ASSERT(masm->has_frame()); masm->set_has_frame(false); } #define __ masm. UnaryMathFunction CreateTranscendentalFunction(TranscendentalCache::Type type) { size_t actual_size; // Allocate buffer in executable space. byte* buffer = static_cast(OS::Allocate(1 * KB, &actual_size, true)); if (buffer == NULL) { // Fallback to library function if function cannot be created. switch (type) { case TranscendentalCache::SIN: return &sin; case TranscendentalCache::COS: return &cos; case TranscendentalCache::TAN: return &tan; case TranscendentalCache::LOG: return &log; default: UNIMPLEMENTED(); } } MacroAssembler masm(NULL, buffer, static_cast(actual_size)); // xmm0: raw double input. // Move double input into registers. __ push(rbx); __ push(rdi); __ movq(rbx, xmm0); __ push(rbx); __ fld_d(Operand(rsp, 0)); TranscendentalCacheStub::GenerateOperation(&masm, type); // The return value is expected to be in xmm0. __ fstp_d(Operand(rsp, 0)); __ pop(rbx); __ movq(xmm0, rbx); __ pop(rdi); __ pop(rbx); __ Ret(); CodeDesc desc; masm.GetCode(&desc); ASSERT(desc.reloc_size == 0); CPU::FlushICache(buffer, actual_size); OS::ProtectCode(buffer, actual_size); return FUNCTION_CAST(buffer); } UnaryMathFunction CreateExpFunction() { if (!FLAG_fast_math) return &exp; size_t actual_size; byte* buffer = static_cast(OS::Allocate(1 * KB, &actual_size, true)); if (buffer == NULL) return &exp; ExternalReference::InitializeMathExpData(); MacroAssembler masm(NULL, buffer, static_cast(actual_size)); // xmm0: raw double input. XMMRegister input = xmm0; XMMRegister result = xmm1; __ push(rax); __ push(rbx); MathExpGenerator::EmitMathExp(&masm, input, result, xmm2, rax, rbx); __ pop(rbx); __ pop(rax); __ movsd(xmm0, result); __ Ret(); CodeDesc desc; masm.GetCode(&desc); CPU::FlushICache(buffer, actual_size); OS::ProtectCode(buffer, actual_size); return FUNCTION_CAST(buffer); } UnaryMathFunction CreateSqrtFunction() { size_t actual_size; // Allocate buffer in executable space. byte* buffer = static_cast(OS::Allocate(1 * KB, &actual_size, true)); if (buffer == NULL) return &sqrt; MacroAssembler masm(NULL, buffer, static_cast(actual_size)); // xmm0: raw double input. // Move double input into registers. __ sqrtsd(xmm0, xmm0); __ Ret(); CodeDesc desc; masm.GetCode(&desc); ASSERT(desc.reloc_size == 0); CPU::FlushICache(buffer, actual_size); OS::ProtectCode(buffer, actual_size); return FUNCTION_CAST(buffer); } #ifdef _WIN64 typedef double (*ModuloFunction)(double, double); // Define custom fmod implementation. ModuloFunction CreateModuloFunction() { size_t actual_size; byte* buffer = static_cast(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler masm(NULL, buffer, static_cast(actual_size)); // Generated code is put into a fixed, unmovable, buffer, and not into // the V8 heap. We can't, and don't, refer to any relocatable addresses // (e.g. the JavaScript nan-object). // Windows 64 ABI passes double arguments in xmm0, xmm1 and // returns result in xmm0. // Argument backing space is allocated on the stack above // the return address. // Compute x mod y. // Load y and x (use argument backing store as temporary storage). __ movsd(Operand(rsp, kPointerSize * 2), xmm1); __ movsd(Operand(rsp, kPointerSize), xmm0); __ fld_d(Operand(rsp, kPointerSize * 2)); __ fld_d(Operand(rsp, kPointerSize)); // Clear exception flags before operation. { Label no_exceptions; __ fwait(); __ fnstsw_ax(); // Clear if Illegal Operand or Zero Division exceptions are set. __ testb(rax, Immediate(5)); __ j(zero, &no_exceptions); __ fnclex(); __ bind(&no_exceptions); } // Compute st(0) % st(1) { Label partial_remainder_loop; __ bind(&partial_remainder_loop); __ fprem(); __ fwait(); __ fnstsw_ax(); __ testl(rax, Immediate(0x400 /* C2 */)); // If C2 is set, computation only has partial result. Loop to // continue computation. __ j(not_zero, &partial_remainder_loop); } Label valid_result; Label return_result; // If Invalid Operand or Zero Division exceptions are set, // return NaN. __ testb(rax, Immediate(5)); __ j(zero, &valid_result); __ fstp(0); // Drop result in st(0). int64_t kNaNValue = V8_INT64_C(0x7ff8000000000000); __ movq(rcx, kNaNValue, RelocInfo::NONE64); __ movq(Operand(rsp, kPointerSize), rcx); __ movsd(xmm0, Operand(rsp, kPointerSize)); __ jmp(&return_result); // If result is valid, return that. __ bind(&valid_result); __ fstp_d(Operand(rsp, kPointerSize)); __ movsd(xmm0, Operand(rsp, kPointerSize)); // Clean up FPU stack and exceptions and return xmm0 __ bind(&return_result); __ fstp(0); // Unload y. Label clear_exceptions; __ testb(rax, Immediate(0x3f /* Any Exception*/)); __ j(not_zero, &clear_exceptions); __ ret(0); __ bind(&clear_exceptions); __ fnclex(); __ ret(0); CodeDesc desc; masm.GetCode(&desc); OS::ProtectCode(buffer, actual_size); // Call the function from C++ through this pointer. return FUNCTION_CAST(buffer); } #endif #undef __ // ------------------------------------------------------------------------- // Code generators #define __ ACCESS_MASM(masm) void ElementsTransitionGenerator::GenerateMapChangeElementsTransition( MacroAssembler* masm, AllocationSiteMode mode, Label* allocation_site_info_found) { // ----------- S t a t e ------------- // -- rax : value // -- rbx : target map // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- if (mode == TRACK_ALLOCATION_SITE) { ASSERT(allocation_site_info_found != NULL); __ TestJSArrayForAllocationSiteInfo(rdx, rdi); __ j(equal, allocation_site_info_found); } // Set transitioned map. __ movq(FieldOperand(rdx, HeapObject::kMapOffset), rbx); __ RecordWriteField(rdx, HeapObject::kMapOffset, rbx, rdi, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } void ElementsTransitionGenerator::GenerateSmiToDouble( MacroAssembler* masm, AllocationSiteMode mode, Label* fail) { // ----------- S t a t e ------------- // -- rax : value // -- rbx : target map // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- // The fail label is not actually used since we do not allocate. Label allocated, new_backing_store, only_change_map, done; if (mode == TRACK_ALLOCATION_SITE) { __ TestJSArrayForAllocationSiteInfo(rdx, rdi); __ j(equal, fail); } // Check for empty arrays, which only require a map transition and no changes // to the backing store. __ movq(r8, FieldOperand(rdx, JSObject::kElementsOffset)); __ CompareRoot(r8, Heap::kEmptyFixedArrayRootIndex); __ j(equal, &only_change_map); // Check backing store for COW-ness. For COW arrays we have to // allocate a new backing store. __ SmiToInteger32(r9, FieldOperand(r8, FixedDoubleArray::kLengthOffset)); __ CompareRoot(FieldOperand(r8, HeapObject::kMapOffset), Heap::kFixedCOWArrayMapRootIndex); __ j(equal, &new_backing_store); // Check if the backing store is in new-space. If not, we need to allocate // a new one since the old one is in pointer-space. // If in new space, we can reuse the old backing store because it is // the same size. __ JumpIfNotInNewSpace(r8, rdi, &new_backing_store); __ movq(r14, r8); // Destination array equals source array. // r8 : source FixedArray // r9 : elements array length // r14: destination FixedDoubleArray // Set backing store's map __ LoadRoot(rdi, Heap::kFixedDoubleArrayMapRootIndex); __ movq(FieldOperand(r14, HeapObject::kMapOffset), rdi); __ bind(&allocated); // Set transitioned map. __ movq(FieldOperand(rdx, HeapObject::kMapOffset), rbx); __ RecordWriteField(rdx, HeapObject::kMapOffset, rbx, rdi, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // Convert smis to doubles and holes to hole NaNs. The Array's length // remains unchanged. STATIC_ASSERT(FixedDoubleArray::kLengthOffset == FixedArray::kLengthOffset); STATIC_ASSERT(FixedDoubleArray::kHeaderSize == FixedArray::kHeaderSize); Label loop, entry, convert_hole; __ movq(r15, BitCast(kHoleNanInt64), RelocInfo::NONE64); // r15: the-hole NaN __ jmp(&entry); // Allocate new backing store. __ bind(&new_backing_store); __ lea(rdi, Operand(r9, times_pointer_size, FixedArray::kHeaderSize)); __ AllocateInNewSpace(rdi, r14, r11, r15, fail, TAG_OBJECT); // Set backing store's map __ LoadRoot(rdi, Heap::kFixedDoubleArrayMapRootIndex); __ movq(FieldOperand(r14, HeapObject::kMapOffset), rdi); // Set receiver's backing store. __ movq(FieldOperand(rdx, JSObject::kElementsOffset), r14); __ movq(r11, r14); __ RecordWriteField(rdx, JSObject::kElementsOffset, r11, r15, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // Set backing store's length. __ Integer32ToSmi(r11, r9); __ movq(FieldOperand(r14, FixedDoubleArray::kLengthOffset), r11); __ jmp(&allocated); __ bind(&only_change_map); // Set transitioned map. __ movq(FieldOperand(rdx, HeapObject::kMapOffset), rbx); __ RecordWriteField(rdx, HeapObject::kMapOffset, rbx, rdi, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ jmp(&done); // Conversion loop. __ bind(&loop); __ movq(rbx, FieldOperand(r8, r9, times_8, FixedArray::kHeaderSize)); // r9 : current element's index // rbx: current element (smi-tagged) __ JumpIfNotSmi(rbx, &convert_hole); __ SmiToInteger32(rbx, rbx); __ cvtlsi2sd(xmm0, rbx); __ movsd(FieldOperand(r14, r9, times_8, FixedDoubleArray::kHeaderSize), xmm0); __ jmp(&entry); __ bind(&convert_hole); if (FLAG_debug_code) { __ CompareRoot(rbx, Heap::kTheHoleValueRootIndex); __ Assert(equal, "object found in smi-only array"); } __ movq(FieldOperand(r14, r9, times_8, FixedDoubleArray::kHeaderSize), r15); __ bind(&entry); __ decq(r9); __ j(not_sign, &loop); __ bind(&done); } void ElementsTransitionGenerator::GenerateDoubleToObject( MacroAssembler* masm, AllocationSiteMode mode, Label* fail) { // ----------- S t a t e ------------- // -- rax : value // -- rbx : target map // -- rcx : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label loop, entry, convert_hole, gc_required, only_change_map; if (mode == TRACK_ALLOCATION_SITE) { __ TestJSArrayForAllocationSiteInfo(rdx, rdi); __ j(equal, fail); } // Check for empty arrays, which only require a map transition and no changes // to the backing store. __ movq(r8, FieldOperand(rdx, JSObject::kElementsOffset)); __ CompareRoot(r8, Heap::kEmptyFixedArrayRootIndex); __ j(equal, &only_change_map); __ push(rax); __ movq(r8, FieldOperand(rdx, JSObject::kElementsOffset)); __ SmiToInteger32(r9, FieldOperand(r8, FixedDoubleArray::kLengthOffset)); // r8 : source FixedDoubleArray // r9 : number of elements __ lea(rdi, Operand(r9, times_pointer_size, FixedArray::kHeaderSize)); __ AllocateInNewSpace(rdi, r11, r14, r15, &gc_required, TAG_OBJECT); // r11: destination FixedArray __ LoadRoot(rdi, Heap::kFixedArrayMapRootIndex); __ movq(FieldOperand(r11, HeapObject::kMapOffset), rdi); __ Integer32ToSmi(r14, r9); __ movq(FieldOperand(r11, FixedArray::kLengthOffset), r14); // Prepare for conversion loop. __ movq(rsi, BitCast(kHoleNanInt64), RelocInfo::NONE64); __ LoadRoot(rdi, Heap::kTheHoleValueRootIndex); // rsi: the-hole NaN // rdi: pointer to the-hole __ jmp(&entry); // Call into runtime if GC is required. __ bind(&gc_required); __ pop(rax); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ jmp(fail); // Box doubles into heap numbers. __ bind(&loop); __ movq(r14, FieldOperand(r8, r9, times_pointer_size, FixedDoubleArray::kHeaderSize)); // r9 : current element's index // r14: current element __ cmpq(r14, rsi); __ j(equal, &convert_hole); // Non-hole double, copy value into a heap number. __ AllocateHeapNumber(rax, r15, &gc_required); // rax: new heap number __ movq(FieldOperand(rax, HeapNumber::kValueOffset), r14); __ movq(FieldOperand(r11, r9, times_pointer_size, FixedArray::kHeaderSize), rax); __ movq(r15, r9); __ RecordWriteArray(r11, rax, r15, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ jmp(&entry, Label::kNear); // Replace the-hole NaN with the-hole pointer. __ bind(&convert_hole); __ movq(FieldOperand(r11, r9, times_pointer_size, FixedArray::kHeaderSize), rdi); __ bind(&entry); __ decq(r9); __ j(not_sign, &loop); // Replace receiver's backing store with newly created and filled FixedArray. __ movq(FieldOperand(rdx, JSObject::kElementsOffset), r11); __ RecordWriteField(rdx, JSObject::kElementsOffset, r11, r15, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ pop(rax); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ bind(&only_change_map); // Set transitioned map. __ movq(FieldOperand(rdx, HeapObject::kMapOffset), rbx); __ RecordWriteField(rdx, HeapObject::kMapOffset, rbx, rdi, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } void StringCharLoadGenerator::Generate(MacroAssembler* masm, Register string, Register index, Register result, Label* call_runtime) { // Fetch the instance type of the receiver into result register. __ movq(result, FieldOperand(string, HeapObject::kMapOffset)); __ movzxbl(result, FieldOperand(result, Map::kInstanceTypeOffset)); // We need special handling for indirect strings. Label check_sequential; __ testb(result, Immediate(kIsIndirectStringMask)); __ j(zero, &check_sequential, Label::kNear); // Dispatch on the indirect string shape: slice or cons. Label cons_string; __ testb(result, Immediate(kSlicedNotConsMask)); __ j(zero, &cons_string, Label::kNear); // Handle slices. Label indirect_string_loaded; __ SmiToInteger32(result, FieldOperand(string, SlicedString::kOffsetOffset)); __ addq(index, result); __ movq(string, FieldOperand(string, SlicedString::kParentOffset)); __ jmp(&indirect_string_loaded, Label::kNear); // Handle cons strings. // Check whether the right hand side is the empty string (i.e. if // this is really a flat string in a cons string). If that is not // the case we would rather go to the runtime system now to flatten // the string. __ bind(&cons_string); __ CompareRoot(FieldOperand(string, ConsString::kSecondOffset), Heap::kEmptyStringRootIndex); __ j(not_equal, call_runtime); __ movq(string, FieldOperand(string, ConsString::kFirstOffset)); __ bind(&indirect_string_loaded); __ movq(result, FieldOperand(string, HeapObject::kMapOffset)); __ movzxbl(result, FieldOperand(result, Map::kInstanceTypeOffset)); // Distinguish sequential and external strings. Only these two string // representations can reach here (slices and flat cons strings have been // reduced to the underlying sequential or external string). Label seq_string; __ bind(&check_sequential); STATIC_ASSERT(kSeqStringTag == 0); __ testb(result, Immediate(kStringRepresentationMask)); __ j(zero, &seq_string, Label::kNear); // Handle external strings. Label ascii_external, done; if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. __ testb(result, Immediate(kIsIndirectStringMask)); __ Assert(zero, "external string expected, but not found"); } // Rule out short external strings. STATIC_CHECK(kShortExternalStringTag != 0); __ testb(result, Immediate(kShortExternalStringTag)); __ j(not_zero, call_runtime); // Check encoding. STATIC_ASSERT(kTwoByteStringTag == 0); __ testb(result, Immediate(kStringEncodingMask)); __ movq(result, FieldOperand(string, ExternalString::kResourceDataOffset)); __ j(not_equal, &ascii_external, Label::kNear); // Two-byte string. __ movzxwl(result, Operand(result, index, times_2, 0)); __ jmp(&done, Label::kNear); __ bind(&ascii_external); // Ascii string. __ movzxbl(result, Operand(result, index, times_1, 0)); __ jmp(&done, Label::kNear); // Dispatch on the encoding: ASCII or two-byte. Label ascii; __ bind(&seq_string); STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); __ testb(result, Immediate(kStringEncodingMask)); __ j(not_zero, &ascii, Label::kNear); // Two-byte string. // Load the two-byte character code into the result register. STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); __ movzxwl(result, FieldOperand(string, index, times_2, SeqTwoByteString::kHeaderSize)); __ jmp(&done, Label::kNear); // ASCII string. // Load the byte into the result register. __ bind(&ascii); __ movzxbl(result, FieldOperand(string, index, times_1, SeqOneByteString::kHeaderSize)); __ bind(&done); } void SeqStringSetCharGenerator::Generate(MacroAssembler* masm, String::Encoding encoding, Register string, Register index, Register value) { if (FLAG_debug_code) { __ Check(masm->CheckSmi(index), "Non-smi index"); __ Check(masm->CheckSmi(value), "Non-smi value"); __ SmiCompare(index, FieldOperand(string, String::kLengthOffset)); __ Check(less, "Index is too large"); __ SmiCompare(index, Smi::FromInt(0)); __ Check(greater_equal, "Index is negative"); __ push(value); __ movq(value, FieldOperand(string, HeapObject::kMapOffset)); __ movzxbq(value, FieldOperand(value, Map::kInstanceTypeOffset)); __ andb(value, Immediate(kStringRepresentationMask | kStringEncodingMask)); static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; __ cmpq(value, Immediate(encoding == String::ONE_BYTE_ENCODING ? one_byte_seq_type : two_byte_seq_type)); __ Check(equal, "Unexpected string type"); __ pop(value); } __ SmiToInteger32(value, value); __ SmiToInteger32(index, index); if (encoding == String::ONE_BYTE_ENCODING) { __ movb(FieldOperand(string, index, times_1, SeqString::kHeaderSize), value); } else { __ movw(FieldOperand(string, index, times_2, SeqString::kHeaderSize), value); } } void MathExpGenerator::EmitMathExp(MacroAssembler* masm, XMMRegister input, XMMRegister result, XMMRegister double_scratch, Register temp1, Register temp2) { ASSERT(!input.is(result)); ASSERT(!input.is(double_scratch)); ASSERT(!result.is(double_scratch)); ASSERT(!temp1.is(temp2)); ASSERT(ExternalReference::math_exp_constants(0).address() != NULL); Label done; __ movq(kScratchRegister, ExternalReference::math_exp_constants(0)); __ movsd(double_scratch, Operand(kScratchRegister, 0 * kDoubleSize)); __ xorpd(result, result); __ ucomisd(double_scratch, input); __ j(above_equal, &done); __ ucomisd(input, Operand(kScratchRegister, 1 * kDoubleSize)); __ movsd(result, Operand(kScratchRegister, 2 * kDoubleSize)); __ j(above_equal, &done); __ movsd(double_scratch, Operand(kScratchRegister, 3 * kDoubleSize)); __ movsd(result, Operand(kScratchRegister, 4 * kDoubleSize)); __ mulsd(double_scratch, input); __ addsd(double_scratch, result); __ movq(temp2, double_scratch); __ subsd(double_scratch, result); __ movsd(result, Operand(kScratchRegister, 6 * kDoubleSize)); __ lea(temp1, Operand(temp2, 0x1ff800)); __ and_(temp2, Immediate(0x7ff)); __ shr(temp1, Immediate(11)); __ mulsd(double_scratch, Operand(kScratchRegister, 5 * kDoubleSize)); __ movq(kScratchRegister, ExternalReference::math_exp_log_table()); __ shl(temp1, Immediate(52)); __ or_(temp1, Operand(kScratchRegister, temp2, times_8, 0)); __ movq(kScratchRegister, ExternalReference::math_exp_constants(0)); __ subsd(double_scratch, input); __ movsd(input, double_scratch); __ subsd(result, double_scratch); __ mulsd(input, double_scratch); __ mulsd(result, input); __ movq(input, temp1); __ mulsd(result, Operand(kScratchRegister, 7 * kDoubleSize)); __ subsd(result, double_scratch); __ addsd(result, Operand(kScratchRegister, 8 * kDoubleSize)); __ mulsd(result, input); __ bind(&done); } #undef __ static const int kNoCodeAgeSequenceLength = 6; static byte* GetNoCodeAgeSequence(uint32_t* length) { static bool initialized = false; static byte sequence[kNoCodeAgeSequenceLength]; *length = kNoCodeAgeSequenceLength; if (!initialized) { // The sequence of instructions that is patched out for aging code is the // following boilerplate stack-building prologue that is found both in // FUNCTION and OPTIMIZED_FUNCTION code: CodePatcher patcher(sequence, kNoCodeAgeSequenceLength); patcher.masm()->push(rbp); patcher.masm()->movq(rbp, rsp); patcher.masm()->push(rsi); patcher.masm()->push(rdi); initialized = true; } return sequence; } bool Code::IsYoungSequence(byte* sequence) { uint32_t young_length; byte* young_sequence = GetNoCodeAgeSequence(&young_length); bool result = (!memcmp(sequence, young_sequence, young_length)); ASSERT(result || *sequence == kCallOpcode); return result; } void Code::GetCodeAgeAndParity(byte* sequence, Age* age, MarkingParity* parity) { if (IsYoungSequence(sequence)) { *age = kNoAge; *parity = NO_MARKING_PARITY; } else { sequence++; // Skip the kCallOpcode byte Address target_address = sequence + *reinterpret_cast(sequence) + Assembler::kCallTargetAddressOffset; Code* stub = GetCodeFromTargetAddress(target_address); GetCodeAgeAndParity(stub, age, parity); } } void Code::PatchPlatformCodeAge(byte* sequence, Code::Age age, MarkingParity parity) { uint32_t young_length; byte* young_sequence = GetNoCodeAgeSequence(&young_length); if (age == kNoAge) { memcpy(sequence, young_sequence, young_length); CPU::FlushICache(sequence, young_length); } else { Code* stub = GetCodeAgeStub(age, parity); CodePatcher patcher(sequence, young_length); patcher.masm()->call(stub->instruction_start()); patcher.masm()->nop(); } } } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64