Sha256: e11c1a58d17da3a5bce818df352565638bd0c8aa734c220a4e36fd02cdee37d9
Contents?: true
Size: 1.56 KB
Versions: 4
Compression:
Stored size: 1.56 KB
Contents
# frozen_string_literal: true require 'rumale/validation' require 'rumale/base/base_estimator' module Rumale module Optimizer # AdaGrad is a class that implements AdaGrad optimizer. # # @deprecated AdaGrad will be deleted in version 0.20.0. # # *Reference* # - Duchi, J., Hazan, E., and Singer, Y., "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization," J. Machine Learning Research, vol. 12, pp. 2121--2159, 2011. class AdaGrad include Base::BaseEstimator include Validation # Create a new optimizer with AdaGrad. # # @param learning_rate [Float] The initial value of learning rate. def initialize(learning_rate: 0.01) warn 'warning: AdaGrad is deprecated. This class will be deleted in version 0.20.0.' check_params_numeric(learning_rate: learning_rate) check_params_positive(learning_rate: learning_rate) @params = {} @params[:learning_rate] = learning_rate @moment = nil end # Calculate the updated weight with AdaGrad adaptive learning rate. # # @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated. # @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight. # @return [Numo::DFloat] (shape: [n_feautres]) The updated weight. def call(weight, gradient) @moment ||= Numo::DFloat.zeros(weight.shape[0]) @moment += gradient**2 weight - (@params[:learning_rate] / (@moment**0.5 + 1.0e-8)) * gradient end end end end
Version data entries
4 entries across 4 versions & 1 rubygems