# An RGB colour object.
class Color::RGB
include Color
# The format of a DeviceRGB colour for PDF. In color-tools 2.0 this will
# be removed from this package and added back as a modification by the
# PDF::Writer package.
PDF_FORMAT_STR = "%.3f %.3f %.3f %s"
# Coerces the other Color object into RGB.
def coerce(other)
other.to_rgb
end
# Creates an RGB colour object from the standard range 0..255.
#
# Color::RGB.new(32, 64, 128)
# Color::RGB.new(0x20, 0x40, 0x80)
def initialize(r = 0, g = 0, b = 0, radix = 255.0, &block) # :yields self:
@r, @g, @b = [ r, g, b ].map { |v| Color.normalize(v / radix) }
block.call(self) if block
end
# Present the colour as a DeviceRGB fill colour string for PDF. This will
# be removed from the default package in color-tools 2.0.
def pdf_fill
PDF_FORMAT_STR % [ @r, @g, @b, "rg" ]
end
# Present the colour as a DeviceRGB stroke colour string for PDF. This
# will be removed from the default package in color-tools 2.0.
def pdf_stroke
PDF_FORMAT_STR % [ @r, @g, @b, "RG" ]
end
# Present the colour as an RGB hex triplet.
def hex
r = (@r * 255).round
r = 255 if r > 255
g = (@g * 255).round
g = 255 if g > 255
b = (@b * 255).round
b = 255 if b > 255
"%02x%02x%02x" % [ r, g, b ]
end
# Present the colour as an HTML/CSS colour string.
def html
"##{hex}"
end
# Present the colour as an RGB HTML/CSS colour string (e.g., "rgb(0%, 50%,
# 100%)"). Note that this will perform a #to_rgb operation using the
# default conversion formula.
def css_rgb
"rgb(%3.2f%%, %3.2f%%, %3.2f%%)" % [ red_p, green_p, blue_p ]
end
# Present the colour as an RGBA (with an optional alpha that defaults to 1)
# HTML/CSS colour string (e.g.,"rgb(0%, 50%, 100%, 1)"). Note that this will
# perform a #to_rgb operation using the default conversion formula.
#
# Color::RGB.by_hex('ff0000').css_rgba
# => 'rgba(100.00%, 0.00%, 0.00%, 1.00)'
# Color::RGB.by_hex('ff0000').css_rgba(0.2)
# => 'rgba(100.00%, 0.00%, 0.00%, 0.20)'
def css_rgba(alpha = 1)
"rgba(%3.2f%%, %3.2f%%, %3.2f%%, %3.2f)" % [ red_p, green_p, blue_p, alpha ]
end
# Present the colour as an HSL HTML/CSS colour string (e.g., "hsl(180,
# 25%, 35%)"). Note that this will perform a #to_hsl operation using the
# default conversion formula.
def css_hsl
to_hsl.css_hsl
end
# Present the colour as an HSLA (with alpha) HTML/CSS colour string (e.g.,
# "hsla(180, 25%, 35%, 1)"). Note that this will perform a #to_hsl
# operation using the default conversion formula.
def css_hsla
to_hsl.css_hsla
end
# Converts the RGB colour to CMYK. Most colour experts strongly suggest
# that this is not a good idea (some even suggesting that it's a very bad
# idea). CMYK represents additive percentages of inks on white paper,
# whereas RGB represents mixed colour intensities on a black screen.
#
# However, the colour conversion can be done. The basic method is
# multi-step:
#
# 1. Convert the R, G, and B components to C, M, and Y components.
# c = 1.0 - r
# m = 1.0 - g
# y = 1.0 - b
# 2. Compute the minimum amount of black (K) required to smooth the colour
# in inks.
# k = min(c, m, y)
# 3. Perform undercolour removal on the C, M, and Y components of the
# colours because less of each colour is needed for each bit of black.
# Also, regenerate the black (K) based on the undercolour removal so
# that the colour is more accurately represented in ink.
# c = min(1.0, max(0.0, c - UCR(k)))
# m = min(1.0, max(0.0, m - UCR(k)))
# y = min(1.0, max(0.0, y - UCR(k)))
# k = min(1.0, max(0.0, BG(k)))
#
# The undercolour removal function and the black generation functions
# return a value based on the brightness of the RGB colour.
def to_cmyk
c = 1.0 - @r.to_f
m = 1.0 - @g.to_f
y = 1.0 - @b.to_f
k = [c, m, y].min
k = k - (k * brightness)
c = [1.0, [0.0, c - k].max].min
m = [1.0, [0.0, m - k].max].min
y = [1.0, [0.0, y - k].max].min
k = [1.0, [0.0, k].max].min
Color::CMYK.from_fraction(c, m, y, k)
end
def to_rgb(ignored = nil)
self
end
# Returns the YIQ (NTSC) colour encoding of the RGB value.
def to_yiq
y = (@r * 0.299) + (@g * 0.587) + (@b * 0.114)
i = (@r * 0.596) + (@g * -0.275) + (@b * -0.321)
q = (@r * 0.212) + (@g * -0.523) + (@b * 0.311)
Color::YIQ.from_fraction(y, i, q)
end
# Returns the HSL colour encoding of the RGB value. The conversions here
# are based on forumlas from http://www.easyrgb.com/math.php and
# elsewhere.
def to_hsl
min = [ @r, @g, @b ].min
max = [ @r, @g, @b ].max
delta = (max - min).to_f
lum = (max + min) / 2.0
if Color.near_zero?(delta) # close to 0.0, so it's a grey
hue = 0
sat = 0
else
if Color.near_zero_or_less?(lum - 0.5)
sat = delta / (max + min).to_f
else
sat = delta / (2 - max - min).to_f
end
# This is based on the conversion algorithm from
# http://en.wikipedia.org/wiki/HSV_color_space#Conversion_from_RGB_to_HSL_or_HSV
# Contributed by Adam Johnson
sixth = 1 / 6.0
if @r == max # Color.near_zero_or_less?(@r - max)
hue = (sixth * ((@g - @b) / delta))
hue += 1.0 if @g < @b
elsif @g == max # Color.near_zero_or_less(@g - max)
hue = (sixth * ((@b - @r) / delta)) + (1.0 / 3.0)
elsif @b == max # Color.near_zero_or_less?(@b - max)
hue = (sixth * ((@r - @g) / delta)) + (2.0 / 3.0)
end
hue += 1 if hue < 0
hue -= 1 if hue > 1
end
Color::HSL.from_fraction(hue, sat, lum)
end
# Returns the XYZ colour encoding of the value. Based on the
# {RGB to XYZ}[http://www.brucelindbloom.com/index.html?Eqn_RGB_to_XYZ.html]
# formula presented by Bruce Lindbloom.
#
# Currently only the sRGB colour space is supported.
def to_xyz(color_space = :sRGB)
unless color_space.to_s.downcase == 'srgb'
raise ArgumentError, "Unsupported colour space #{color_space}."
end
# Inverse sRGB companding. Linearizes RGB channels with respect to
# energy.
r, g, b = [ @r, @g, @b ].map { |v|
if (v > 0.04045)
(((v + 0.055) / 1.055) ** 2.4) * 100
else
(v / 12.92) * 100
end
}
# Convert using the RGB/XYZ matrix at:
# http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html#WSMatrices
{
:x => (r * 0.4124564 + g * 0.3575761 + b * 0.1804375),
:y => (r * 0.2126729 + g * 0.7151522 + b * 0.0721750),
:z => (r * 0.0193339 + g * 0.1191920 + b * 0.9503041)
}
end
# Returns the L*a*b* colour encoding of the value via the XYZ colour
# encoding. Based on the
# {XYZ to Lab}[http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_Lab.html]
# formula presented by Bruce Lindbloom.
#
# Currently only the sRGB colour space is supported and defaults to using
# a D65 reference white.
def to_lab(color_space = :sRGB, reference_white = [ 95.047, 100.00, 108.883 ])
xyz = to_xyz
# Calculate the ratio of the XYZ values to the reference white.
# http://www.brucelindbloom.com/index.html?Equations.html
xr = xyz[:x] / reference_white[0]
yr = xyz[:y] / reference_white[1]
zr = xyz[:z] / reference_white[2]
# NOTE: This should be using Rational instead of floating point values,
# otherwise there will be discontinuities.
# http://www.brucelindbloom.com/LContinuity.html
epsilon = (216 / 24389.0)
kappa = (24389 / 27.0)
# And now transform
# http://en.wikipedia.org/wiki/Lab_color_space#Forward_transformation
# There is a brief explanation there as far as the nature of the calculations,
# as well as a much nicer looking modeling of the algebra.
fx, fy, fz = [ xr, yr, zr ].map { |t|
if (t > (epsilon))
t ** (1.0 / 3)
else # t <= epsilon
((kappa * t) + 16) / 116.0
# The 4/29 here is for when t = 0 (black). 4/29 * 116 = 16, and 16 -
# 16 = 0, which is the correct value for L* with black.
# ((1.0/3)*((29.0/6)**2) * t) + (4.0/29)
end
}
{
:L => ((116 * fy) - 16),
:a => (500 * (fx - fy)),
:b => (200 * (fy - fz))
}
end
# Mix the RGB hue with White so that the RGB hue is the specified
# percentage of the resulting colour. Strictly speaking, this isn't a
# darken_by operation.
def lighten_by(percent)
mix_with(White, percent)
end
# Mix the RGB hue with Black so that the RGB hue is the specified
# percentage of the resulting colour. Strictly speaking, this isn't a
# darken_by operation.
def darken_by(percent)
mix_with(Black, percent)
end
# Mix the mask colour (which must be an RGB object) with the current
# colour at the stated opacity percentage (0..100).
def mix_with(mask, opacity)
opacity /= 100.0
rgb = self.dup
rgb.r = (@r * opacity) + (mask.r * (1 - opacity))
rgb.g = (@g * opacity) + (mask.g * (1 - opacity))
rgb.b = (@b * opacity) + (mask.b * (1 - opacity))
rgb
end
# Returns the brightness value for a colour, a number between 0..1. Based
# on the Y value of YIQ encoding, representing luminosity, or perceived
# brightness.
#
# This may be modified in a future version of color-tools to use the
# luminosity value of HSL.
def brightness
to_yiq.y
end
# Convert to grayscale.
def to_grayscale
Color::GrayScale.from_fraction(to_hsl.l)
end
alias to_greyscale to_grayscale
# Returns a new colour with the brightness adjusted by the specified
# percentage. Negative percentages will darken the colour; positive
# percentages will brighten the colour.
#
# Color::RGB::DarkBlue.adjust_brightness(10)
# Color::RGB::DarkBlue.adjust_brightness(-10)
def adjust_brightness(percent)
percent = normalize_percent(percent)
hsl = to_hsl
hsl.l *= percent
hsl.to_rgb
end
# Returns a new colour with the saturation adjusted by the specified
# percentage. Negative percentages will reduce the saturation; positive
# percentages will increase the saturation.
#
# Color::RGB::DarkBlue.adjust_saturation(10)
# Color::RGB::DarkBlue.adjust_saturation(-10)
def adjust_saturation(percent)
percent = normalize_percent(percent)
hsl = to_hsl
hsl.s *= percent
hsl.to_rgb
end
# Returns a new colour with the hue adjusted by the specified percentage.
# Negative percentages will reduce the hue; positive percentages will
# increase the hue.
#
# Color::RGB::DarkBlue.adjust_hue(10)
# Color::RGB::DarkBlue.adjust_hue(-10)
def adjust_hue(percent)
percent = normalize_percent(percent)
hsl = to_hsl
hsl.h *= percent
hsl.to_rgb
end
# TODO: Identify the base colour profile used for L*a*b* and XYZ
# conversions.
# Calculates and returns the closest match to this colour from a list of
# provided colours. Returns +nil+ if +color_list+ is empty or if there is
# no colour within the +threshold_distance+.
#
# +threshold_distance+ is used to determine the minimum colour distance
# permitted. Uses the CIE Delta E 1994 algorithm (CIE94) to find near
# matches based on perceived visual colour. The default value (1000.0) is
# an arbitrarily large number. The values :jnd and
# :just_noticeable may be passed as the +threshold_distance+ to
# use the value 2.3.
def closest_match(color_list, threshold_distance = 1000.0)
color_list = [ color_list ].flatten(1)
return nil if color_list.empty?
threshold_distance = case threshold_distance
when :jnd, :just_noticeable
2.3
else
threshold_distance.to_f
end
lab = to_lab
closest_distance = threshold_distance
best_match = nil
color_list.each do |c|
distance = delta_e94(lab, c.to_lab)
if (distance < closest_distance)
closest_distance = distance
best_match = c
end
end
best_match
end
# The Delta E (CIE94) algorithm
# http://en.wikipedia.org/wiki/Color_difference#CIE94
#
# There is a newer version, CIEDE2000, that uses slightly more complicated
# math, but addresses "the perceptual uniformity issue" left lingering by
# the CIE94 algorithm. color_1 and color_2 are both L*a*b* hashes,
# rendered by #to_lab.
#
# Since our source is treated as sRGB, we use the "graphic arts" presets
# for k_L, k_1, and k_2
#
# The calculations go through LCH(ab). (?)
#
# See also http://www.brucelindbloom.com/index.html?Eqn_DeltaE_CIE94.html
#
# NOTE: This should be moved to Color::Lab.
def delta_e94(color_1, color_2, weighting_type = :graphic_arts)
case weighting_type
when :graphic_arts
k_1 = 0.045
k_2 = 0.015
k_L = 1
when :textiles
k_1 = 0.048
k_2 = 0.014
k_L = 2
else
raise ArgumentError, "Unsupported weighting type #{weighting_type}."
end
# delta_E = Math.sqrt(
# ((delta_L / (k_L * s_L)) ** 2) +
# ((delta_C / (k_C * s_C)) ** 2) +
# ((delta_H / (k_H * s_H)) ** 2)
# )
#
# Under some circumstances in real computers, delta_H could be an
# imaginary number (it's a square root value), so we're going to treat
# this as:
#
# delta_E = Math.sqrt(
# ((delta_L / (k_L * s_L)) ** 2) +
# ((delta_C / (k_C * s_C)) ** 2) +
# (delta_H2 / ((k_H * s_H) ** 2)))
# )
#
# And not perform the square root when calculating delta_H2.
k_C = k_H = 1
l_1, a_1, b_1 = color_1.values_at(:L, :a, :b)
l_2, a_2, b_2 = color_2.values_at(:L, :a, :b)
delta_a = a_1 - a_2
delta_b = b_1 - b_2
c_1 = Math.sqrt((a_1 ** 2) + (b_1 ** 2))
c_2 = Math.sqrt((a_2 ** 2) + (b_2 ** 2))
delta_L = color_1[:L] - color_2[:L]
delta_C = c_1 - c_2
delta_H2 = (delta_a ** 2) + (delta_b ** 2) - (delta_C ** 2)
s_L = 1
s_C = 1 + k_1 * c_1
s_H = 1 + k_2 * c_1
composite_L = (delta_L / (k_L * s_L)) ** 2
composite_C = (delta_C / (k_C * s_C)) ** 2
composite_H = delta_H2 / ((k_H * s_H) ** 2)
Math.sqrt(composite_L + composite_C + composite_H)
end
# Returns the red component of the colour in the normal 0 .. 255 range.
def red
@r * 255.0
end
# Returns the red component of the colour as a percentage.
def red_p
@r * 100.0
end
# Returns the red component of the colour as a fraction in the range 0.0
# .. 1.0.
def r
@r
end
# Sets the red component of the colour in the normal 0 .. 255 range.
def red=(rr)
@r = Color.normalize(rr / 255.0)
end
# Sets the red component of the colour as a percentage.
def red_p=(rr)
@r = Color.normalize(rr / 100.0)
end
# Sets the red component of the colour as a fraction in the range 0.0 ..
# 1.0.
def r=(rr)
@r = Color.normalize(rr)
end
# Returns the green component of the colour in the normal 0 .. 255 range.
def green
@g * 255.0
end
# Returns the green component of the colour as a percentage.
def green_p
@g * 100.0
end
# Returns the green component of the colour as a fraction in the range 0.0
# .. 1.0.
def g
@g
end
# Sets the green component of the colour in the normal 0 .. 255 range.
def green=(gg)
@g = Color.normalize(gg / 255.0)
end
# Sets the green component of the colour as a percentage.
def green_p=(gg)
@g = Color.normalize(gg / 100.0)
end
# Sets the green component of the colour as a fraction in the range 0.0 ..
# 1.0.
def g=(gg)
@g = Color.normalize(gg)
end
# Returns the blue component of the colour in the normal 0 .. 255 range.
def blue
@b * 255.0
end
# Returns the blue component of the colour as a percentage.
def blue_p
@b * 100.0
end
# Returns the blue component of the colour as a fraction in the range 0.0
# .. 1.0.
def b
@b
end
# Sets the blue component of the colour in the normal 0 .. 255 range.
def blue=(bb)
@b = Color.normalize(bb / 255.0)
end
# Sets the blue component of the colour as a percentage.
def blue_p=(bb)
@b = Color.normalize(bb / 100.0)
end
# Sets the blue component of the colour as a fraction in the range 0.0 ..
# 1.0.
def b=(bb)
@b = Color.normalize(bb)
end
# Adds another colour to the current colour. The other colour will be
# converted to RGB before addition. This conversion depends upon a #to_rgb
# method on the other colour.
#
# The addition is done using the RGB Accessor methods to ensure a valid
# colour in the result.
def +(other)
self.class.from_fraction(r + other.r, g + other.g, b + other.b)
end
# Subtracts another colour to the current colour. The other colour will be
# converted to RGB before subtraction. This conversion depends upon a
# #to_rgb method on the other colour.
#
# The subtraction is done using the RGB Accessor methods to ensure a valid
# colour in the result.
def -(other)
self + (-other)
end
# Retrieve the maxmum RGB value from the current colour as a GrayScale
# colour
def max_rgb_as_grayscale
Color::GrayScale.from_fraction([@r, @g, @b].max)
end
alias max_rgb_as_greyscale max_rgb_as_grayscale
def inspect
"RGB [#{html}]"
end
def to_a
[ r, g, b ]
end
# Numerically negate the color. This results in a color that is only
# usable for subtraction.
def -@
rgb = self.dup
rgb.instance_variable_set(:@r, -rgb.r)
rgb.instance_variable_set(:@g, -rgb.g)
rgb.instance_variable_set(:@b, -rgb.b)
rgb
end
private
def normalize_percent(percent)
percent /= 100.0
percent += 1.0
percent = [ percent, 2.0 ].min
percent = [ 0.0, percent ].max
percent
end
end
class << Color::RGB
# Creates an RGB colour object from percentages 0..100.
#
# Color::RGB.from_percentage(10, 20, 30)
def from_percentage(r = 0, g = 0, b = 0, &block)
new(r, g, b, 100.0, &block)
end
# Creates an RGB colour object from fractional values 0..1.
#
# Color::RGB.from_fraction(.3, .2, .1)
def from_fraction(r = 0.0, g = 0.0, b = 0.0, &block)
new(r, g, b, 1.0, &block)
end
# Creates an RGB colour object from a grayscale fractional value 0..1.
def from_grayscale_fraction(l = 0.0, &block)
new(l, l, l, 1.0, &block)
end
alias_method :from_greyscale_fraction, :from_grayscale_fraction
# Creates an RGB colour object from an HTML colour descriptor (e.g.,
# "fed" or "#cabbed;".
#
# Color::RGB.from_html("fed")
# Color::RGB.from_html("#fed")
# Color::RGB.from_html("#cabbed")
# Color::RGB.from_html("cabbed")
def from_html(html_colour, &block)
# When we can move to 1.9+ only, this will be \h
h = html_colour.scan(/[0-9a-f]/i)
case h.size
when 3
new(*h.map { |v| (v * 2).to_i(16) }, &block)
when 6
new(*h.each_slice(2).map { |v| v.join.to_i(16) }, &block)
else
raise ArgumentError, "Not a supported HTML colour type."
end
end
# Find or create a colour by an HTML hex code. This differs from the
# #from_html method in that if the colour code matches a named colour,
# the existing colour will be returned.
#
# Color::RGB.by_hex('ff0000').name # => 'red'
# Color::RGB.by_hex('ff0001').name # => nil
#
# If a block is provided, the value that is returned by the block will
# be returned instead of the exception caused by an error in providing a
# correct hex format.
def by_hex(hex, &block)
__by_hex.fetch(html_hexify(hex)) { from_html(hex) }
rescue
if block
block.call
else
raise
end
end
# Return a colour as identified by the colour name.
def by_name(name, &block)
__by_name.fetch(name.to_s.downcase, &block)
end
# Return a colour as identified by the colour name, or by hex.
def by_css(name_or_hex, &block)
by_name(name_or_hex) { by_hex(name_or_hex, &block) }
end
# Extract named or hex colours from the provided text.
def extract_colors(text, mode = :both)
text = text.downcase
regex = case mode
when :name
Regexp.union(__by_name.keys)
when :hex
Regexp.union(__by_hex.keys)
when :both
Regexp.union(__by_hex.keys + __by_name.keys)
end
text.scan(regex).map { |match|
case mode
when :name
by_name(match)
when :hex
by_hex(match)
when :both
by_css(match)
end
}
end
end
class << Color::RGB
private
def __named_color(mod, rgb, *names)
used = names - mod.constants.map(&:to_sym)
if used.length < names.length
raise ArgumentError, "#{names.join(', ')} already defined in #{mod}"
end
names.each { |n| mod.const_set(n, rgb) }
rgb.names = names
rgb.names.each { |n| __by_name[n] = rgb }
__by_hex[rgb.hex] = rgb
rgb.freeze
end
def __by_hex
@__by_hex ||= {}
end
def __by_name
@__by_name ||= {}
end
def html_hexify(hex)
# When we can move to 1.9+ only, this will be \h
h = hex.to_s.downcase.scan(/[0-9a-f]/)
case h.size
when 3
h.map { |v| (v * 2) }.join
when 6
h.join
else
raise ArgumentError, "Not a supported HTML colour type."
end
end
end
require 'atome/helpers/color_helper/color/rgb/colors'