# An RGB colour object. class Color::RGB include Color # The format of a DeviceRGB colour for PDF. In color-tools 2.0 this will # be removed from this package and added back as a modification by the # PDF::Writer package. PDF_FORMAT_STR = "%.3f %.3f %.3f %s" # Coerces the other Color object into RGB. def coerce(other) other.to_rgb end # Creates an RGB colour object from the standard range 0..255. # # Color::RGB.new(32, 64, 128) # Color::RGB.new(0x20, 0x40, 0x80) def initialize(r = 0, g = 0, b = 0, radix = 255.0, &block) # :yields self: @r, @g, @b = [ r, g, b ].map { |v| Color.normalize(v / radix) } block.call(self) if block end # Present the colour as a DeviceRGB fill colour string for PDF. This will # be removed from the default package in color-tools 2.0. def pdf_fill PDF_FORMAT_STR % [ @r, @g, @b, "rg" ] end # Present the colour as a DeviceRGB stroke colour string for PDF. This # will be removed from the default package in color-tools 2.0. def pdf_stroke PDF_FORMAT_STR % [ @r, @g, @b, "RG" ] end # Present the colour as an RGB hex triplet. def hex r = (@r * 255).round r = 255 if r > 255 g = (@g * 255).round g = 255 if g > 255 b = (@b * 255).round b = 255 if b > 255 "%02x%02x%02x" % [ r, g, b ] end # Present the colour as an HTML/CSS colour string. def html "##{hex}" end # Present the colour as an RGB HTML/CSS colour string (e.g., "rgb(0%, 50%, # 100%)"). Note that this will perform a #to_rgb operation using the # default conversion formula. def css_rgb "rgb(%3.2f%%, %3.2f%%, %3.2f%%)" % [ red_p, green_p, blue_p ] end # Present the colour as an RGBA (with an optional alpha that defaults to 1) # HTML/CSS colour string (e.g.,"rgb(0%, 50%, 100%, 1)"). Note that this will # perform a #to_rgb operation using the default conversion formula. # # Color::RGB.by_hex('ff0000').css_rgba # => 'rgba(100.00%, 0.00%, 0.00%, 1.00)' # Color::RGB.by_hex('ff0000').css_rgba(0.2) # => 'rgba(100.00%, 0.00%, 0.00%, 0.20)' def css_rgba(alpha = 1) "rgba(%3.2f%%, %3.2f%%, %3.2f%%, %3.2f)" % [ red_p, green_p, blue_p, alpha ] end # Present the colour as an HSL HTML/CSS colour string (e.g., "hsl(180, # 25%, 35%)"). Note that this will perform a #to_hsl operation using the # default conversion formula. def css_hsl to_hsl.css_hsl end # Present the colour as an HSLA (with alpha) HTML/CSS colour string (e.g., # "hsla(180, 25%, 35%, 1)"). Note that this will perform a #to_hsl # operation using the default conversion formula. def css_hsla to_hsl.css_hsla end # Converts the RGB colour to CMYK. Most colour experts strongly suggest # that this is not a good idea (some even suggesting that it's a very bad # idea). CMYK represents additive percentages of inks on white paper, # whereas RGB represents mixed colour intensities on a black screen. # # However, the colour conversion can be done. The basic method is # multi-step: # # 1. Convert the R, G, and B components to C, M, and Y components. # c = 1.0 - r # m = 1.0 - g # y = 1.0 - b # 2. Compute the minimum amount of black (K) required to smooth the colour # in inks. # k = min(c, m, y) # 3. Perform undercolour removal on the C, M, and Y components of the # colours because less of each colour is needed for each bit of black. # Also, regenerate the black (K) based on the undercolour removal so # that the colour is more accurately represented in ink. # c = min(1.0, max(0.0, c - UCR(k))) # m = min(1.0, max(0.0, m - UCR(k))) # y = min(1.0, max(0.0, y - UCR(k))) # k = min(1.0, max(0.0, BG(k))) # # The undercolour removal function and the black generation functions # return a value based on the brightness of the RGB colour. def to_cmyk c = 1.0 - @r.to_f m = 1.0 - @g.to_f y = 1.0 - @b.to_f k = [c, m, y].min k = k - (k * brightness) c = [1.0, [0.0, c - k].max].min m = [1.0, [0.0, m - k].max].min y = [1.0, [0.0, y - k].max].min k = [1.0, [0.0, k].max].min Color::CMYK.from_fraction(c, m, y, k) end def to_rgb(ignored = nil) self end # Returns the YIQ (NTSC) colour encoding of the RGB value. def to_yiq y = (@r * 0.299) + (@g * 0.587) + (@b * 0.114) i = (@r * 0.596) + (@g * -0.275) + (@b * -0.321) q = (@r * 0.212) + (@g * -0.523) + (@b * 0.311) Color::YIQ.from_fraction(y, i, q) end # Returns the HSL colour encoding of the RGB value. The conversions here # are based on forumlas from http://www.easyrgb.com/math.php and # elsewhere. def to_hsl min = [ @r, @g, @b ].min max = [ @r, @g, @b ].max delta = (max - min).to_f lum = (max + min) / 2.0 if Color.near_zero?(delta) # close to 0.0, so it's a grey hue = 0 sat = 0 else if Color.near_zero_or_less?(lum - 0.5) sat = delta / (max + min).to_f else sat = delta / (2 - max - min).to_f end # This is based on the conversion algorithm from # http://en.wikipedia.org/wiki/HSV_color_space#Conversion_from_RGB_to_HSL_or_HSV # Contributed by Adam Johnson sixth = 1 / 6.0 if @r == max # Color.near_zero_or_less?(@r - max) hue = (sixth * ((@g - @b) / delta)) hue += 1.0 if @g < @b elsif @g == max # Color.near_zero_or_less(@g - max) hue = (sixth * ((@b - @r) / delta)) + (1.0 / 3.0) elsif @b == max # Color.near_zero_or_less?(@b - max) hue = (sixth * ((@r - @g) / delta)) + (2.0 / 3.0) end hue += 1 if hue < 0 hue -= 1 if hue > 1 end Color::HSL.from_fraction(hue, sat, lum) end # Returns the XYZ colour encoding of the value. Based on the # {RGB to XYZ}[http://www.brucelindbloom.com/index.html?Eqn_RGB_to_XYZ.html] # formula presented by Bruce Lindbloom. # # Currently only the sRGB colour space is supported. def to_xyz(color_space = :sRGB) unless color_space.to_s.downcase == 'srgb' raise ArgumentError, "Unsupported colour space #{color_space}." end # Inverse sRGB companding. Linearizes RGB channels with respect to # energy. r, g, b = [ @r, @g, @b ].map { |v| if (v > 0.04045) (((v + 0.055) / 1.055) ** 2.4) * 100 else (v / 12.92) * 100 end } # Convert using the RGB/XYZ matrix at: # http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html#WSMatrices { :x => (r * 0.4124564 + g * 0.3575761 + b * 0.1804375), :y => (r * 0.2126729 + g * 0.7151522 + b * 0.0721750), :z => (r * 0.0193339 + g * 0.1191920 + b * 0.9503041) } end # Returns the L*a*b* colour encoding of the value via the XYZ colour # encoding. Based on the # {XYZ to Lab}[http://www.brucelindbloom.com/index.html?Eqn_XYZ_to_Lab.html] # formula presented by Bruce Lindbloom. # # Currently only the sRGB colour space is supported and defaults to using # a D65 reference white. def to_lab(color_space = :sRGB, reference_white = [ 95.047, 100.00, 108.883 ]) xyz = to_xyz # Calculate the ratio of the XYZ values to the reference white. # http://www.brucelindbloom.com/index.html?Equations.html xr = xyz[:x] / reference_white[0] yr = xyz[:y] / reference_white[1] zr = xyz[:z] / reference_white[2] # NOTE: This should be using Rational instead of floating point values, # otherwise there will be discontinuities. # http://www.brucelindbloom.com/LContinuity.html epsilon = (216 / 24389.0) kappa = (24389 / 27.0) # And now transform # http://en.wikipedia.org/wiki/Lab_color_space#Forward_transformation # There is a brief explanation there as far as the nature of the calculations, # as well as a much nicer looking modeling of the algebra. fx, fy, fz = [ xr, yr, zr ].map { |t| if (t > (epsilon)) t ** (1.0 / 3) else # t <= epsilon ((kappa * t) + 16) / 116.0 # The 4/29 here is for when t = 0 (black). 4/29 * 116 = 16, and 16 - # 16 = 0, which is the correct value for L* with black. # ((1.0/3)*((29.0/6)**2) * t) + (4.0/29) end } { :L => ((116 * fy) - 16), :a => (500 * (fx - fy)), :b => (200 * (fy - fz)) } end # Mix the RGB hue with White so that the RGB hue is the specified # percentage of the resulting colour. Strictly speaking, this isn't a # darken_by operation. def lighten_by(percent) mix_with(White, percent) end # Mix the RGB hue with Black so that the RGB hue is the specified # percentage of the resulting colour. Strictly speaking, this isn't a # darken_by operation. def darken_by(percent) mix_with(Black, percent) end # Mix the mask colour (which must be an RGB object) with the current # colour at the stated opacity percentage (0..100). def mix_with(mask, opacity) opacity /= 100.0 rgb = self.dup rgb.r = (@r * opacity) + (mask.r * (1 - opacity)) rgb.g = (@g * opacity) + (mask.g * (1 - opacity)) rgb.b = (@b * opacity) + (mask.b * (1 - opacity)) rgb end # Returns the brightness value for a colour, a number between 0..1. Based # on the Y value of YIQ encoding, representing luminosity, or perceived # brightness. # # This may be modified in a future version of color-tools to use the # luminosity value of HSL. def brightness to_yiq.y end # Convert to grayscale. def to_grayscale Color::GrayScale.from_fraction(to_hsl.l) end alias to_greyscale to_grayscale # Returns a new colour with the brightness adjusted by the specified # percentage. Negative percentages will darken the colour; positive # percentages will brighten the colour. # # Color::RGB::DarkBlue.adjust_brightness(10) # Color::RGB::DarkBlue.adjust_brightness(-10) def adjust_brightness(percent) percent = normalize_percent(percent) hsl = to_hsl hsl.l *= percent hsl.to_rgb end # Returns a new colour with the saturation adjusted by the specified # percentage. Negative percentages will reduce the saturation; positive # percentages will increase the saturation. # # Color::RGB::DarkBlue.adjust_saturation(10) # Color::RGB::DarkBlue.adjust_saturation(-10) def adjust_saturation(percent) percent = normalize_percent(percent) hsl = to_hsl hsl.s *= percent hsl.to_rgb end # Returns a new colour with the hue adjusted by the specified percentage. # Negative percentages will reduce the hue; positive percentages will # increase the hue. # # Color::RGB::DarkBlue.adjust_hue(10) # Color::RGB::DarkBlue.adjust_hue(-10) def adjust_hue(percent) percent = normalize_percent(percent) hsl = to_hsl hsl.h *= percent hsl.to_rgb end # TODO: Identify the base colour profile used for L*a*b* and XYZ # conversions. # Calculates and returns the closest match to this colour from a list of # provided colours. Returns +nil+ if +color_list+ is empty or if there is # no colour within the +threshold_distance+. # # +threshold_distance+ is used to determine the minimum colour distance # permitted. Uses the CIE Delta E 1994 algorithm (CIE94) to find near # matches based on perceived visual colour. The default value (1000.0) is # an arbitrarily large number. The values :jnd and # :just_noticeable may be passed as the +threshold_distance+ to # use the value 2.3. def closest_match(color_list, threshold_distance = 1000.0) color_list = [ color_list ].flatten(1) return nil if color_list.empty? threshold_distance = case threshold_distance when :jnd, :just_noticeable 2.3 else threshold_distance.to_f end lab = to_lab closest_distance = threshold_distance best_match = nil color_list.each do |c| distance = delta_e94(lab, c.to_lab) if (distance < closest_distance) closest_distance = distance best_match = c end end best_match end # The Delta E (CIE94) algorithm # http://en.wikipedia.org/wiki/Color_difference#CIE94 # # There is a newer version, CIEDE2000, that uses slightly more complicated # math, but addresses "the perceptual uniformity issue" left lingering by # the CIE94 algorithm. color_1 and color_2 are both L*a*b* hashes, # rendered by #to_lab. # # Since our source is treated as sRGB, we use the "graphic arts" presets # for k_L, k_1, and k_2 # # The calculations go through LCH(ab). (?) # # See also http://www.brucelindbloom.com/index.html?Eqn_DeltaE_CIE94.html # # NOTE: This should be moved to Color::Lab. def delta_e94(color_1, color_2, weighting_type = :graphic_arts) case weighting_type when :graphic_arts k_1 = 0.045 k_2 = 0.015 k_L = 1 when :textiles k_1 = 0.048 k_2 = 0.014 k_L = 2 else raise ArgumentError, "Unsupported weighting type #{weighting_type}." end # delta_E = Math.sqrt( # ((delta_L / (k_L * s_L)) ** 2) + # ((delta_C / (k_C * s_C)) ** 2) + # ((delta_H / (k_H * s_H)) ** 2) # ) # # Under some circumstances in real computers, delta_H could be an # imaginary number (it's a square root value), so we're going to treat # this as: # # delta_E = Math.sqrt( # ((delta_L / (k_L * s_L)) ** 2) + # ((delta_C / (k_C * s_C)) ** 2) + # (delta_H2 / ((k_H * s_H) ** 2))) # ) # # And not perform the square root when calculating delta_H2. k_C = k_H = 1 l_1, a_1, b_1 = color_1.values_at(:L, :a, :b) l_2, a_2, b_2 = color_2.values_at(:L, :a, :b) delta_a = a_1 - a_2 delta_b = b_1 - b_2 c_1 = Math.sqrt((a_1 ** 2) + (b_1 ** 2)) c_2 = Math.sqrt((a_2 ** 2) + (b_2 ** 2)) delta_L = color_1[:L] - color_2[:L] delta_C = c_1 - c_2 delta_H2 = (delta_a ** 2) + (delta_b ** 2) - (delta_C ** 2) s_L = 1 s_C = 1 + k_1 * c_1 s_H = 1 + k_2 * c_1 composite_L = (delta_L / (k_L * s_L)) ** 2 composite_C = (delta_C / (k_C * s_C)) ** 2 composite_H = delta_H2 / ((k_H * s_H) ** 2) Math.sqrt(composite_L + composite_C + composite_H) end # Returns the red component of the colour in the normal 0 .. 255 range. def red @r * 255.0 end # Returns the red component of the colour as a percentage. def red_p @r * 100.0 end # Returns the red component of the colour as a fraction in the range 0.0 # .. 1.0. def r @r end # Sets the red component of the colour in the normal 0 .. 255 range. def red=(rr) @r = Color.normalize(rr / 255.0) end # Sets the red component of the colour as a percentage. def red_p=(rr) @r = Color.normalize(rr / 100.0) end # Sets the red component of the colour as a fraction in the range 0.0 .. # 1.0. def r=(rr) @r = Color.normalize(rr) end # Returns the green component of the colour in the normal 0 .. 255 range. def green @g * 255.0 end # Returns the green component of the colour as a percentage. def green_p @g * 100.0 end # Returns the green component of the colour as a fraction in the range 0.0 # .. 1.0. def g @g end # Sets the green component of the colour in the normal 0 .. 255 range. def green=(gg) @g = Color.normalize(gg / 255.0) end # Sets the green component of the colour as a percentage. def green_p=(gg) @g = Color.normalize(gg / 100.0) end # Sets the green component of the colour as a fraction in the range 0.0 .. # 1.0. def g=(gg) @g = Color.normalize(gg) end # Returns the blue component of the colour in the normal 0 .. 255 range. def blue @b * 255.0 end # Returns the blue component of the colour as a percentage. def blue_p @b * 100.0 end # Returns the blue component of the colour as a fraction in the range 0.0 # .. 1.0. def b @b end # Sets the blue component of the colour in the normal 0 .. 255 range. def blue=(bb) @b = Color.normalize(bb / 255.0) end # Sets the blue component of the colour as a percentage. def blue_p=(bb) @b = Color.normalize(bb / 100.0) end # Sets the blue component of the colour as a fraction in the range 0.0 .. # 1.0. def b=(bb) @b = Color.normalize(bb) end # Adds another colour to the current colour. The other colour will be # converted to RGB before addition. This conversion depends upon a #to_rgb # method on the other colour. # # The addition is done using the RGB Accessor methods to ensure a valid # colour in the result. def +(other) self.class.from_fraction(r + other.r, g + other.g, b + other.b) end # Subtracts another colour to the current colour. The other colour will be # converted to RGB before subtraction. This conversion depends upon a # #to_rgb method on the other colour. # # The subtraction is done using the RGB Accessor methods to ensure a valid # colour in the result. def -(other) self + (-other) end # Retrieve the maxmum RGB value from the current colour as a GrayScale # colour def max_rgb_as_grayscale Color::GrayScale.from_fraction([@r, @g, @b].max) end alias max_rgb_as_greyscale max_rgb_as_grayscale def inspect "RGB [#{html}]" end def to_a [ r, g, b ] end # Numerically negate the color. This results in a color that is only # usable for subtraction. def -@ rgb = self.dup rgb.instance_variable_set(:@r, -rgb.r) rgb.instance_variable_set(:@g, -rgb.g) rgb.instance_variable_set(:@b, -rgb.b) rgb end private def normalize_percent(percent) percent /= 100.0 percent += 1.0 percent = [ percent, 2.0 ].min percent = [ 0.0, percent ].max percent end end class << Color::RGB # Creates an RGB colour object from percentages 0..100. # # Color::RGB.from_percentage(10, 20, 30) def from_percentage(r = 0, g = 0, b = 0, &block) new(r, g, b, 100.0, &block) end # Creates an RGB colour object from fractional values 0..1. # # Color::RGB.from_fraction(.3, .2, .1) def from_fraction(r = 0.0, g = 0.0, b = 0.0, &block) new(r, g, b, 1.0, &block) end # Creates an RGB colour object from a grayscale fractional value 0..1. def from_grayscale_fraction(l = 0.0, &block) new(l, l, l, 1.0, &block) end alias_method :from_greyscale_fraction, :from_grayscale_fraction # Creates an RGB colour object from an HTML colour descriptor (e.g., # "fed" or "#cabbed;". # # Color::RGB.from_html("fed") # Color::RGB.from_html("#fed") # Color::RGB.from_html("#cabbed") # Color::RGB.from_html("cabbed") def from_html(html_colour, &block) # When we can move to 1.9+ only, this will be \h h = html_colour.scan(/[0-9a-f]/i) case h.size when 3 new(*h.map { |v| (v * 2).to_i(16) }, &block) when 6 new(*h.each_slice(2).map { |v| v.join.to_i(16) }, &block) else raise ArgumentError, "Not a supported HTML colour type." end end # Find or create a colour by an HTML hex code. This differs from the # #from_html method in that if the colour code matches a named colour, # the existing colour will be returned. # # Color::RGB.by_hex('ff0000').name # => 'red' # Color::RGB.by_hex('ff0001').name # => nil # # If a block is provided, the value that is returned by the block will # be returned instead of the exception caused by an error in providing a # correct hex format. def by_hex(hex, &block) __by_hex.fetch(html_hexify(hex)) { from_html(hex) } rescue if block block.call else raise end end # Return a colour as identified by the colour name. def by_name(name, &block) __by_name.fetch(name.to_s.downcase, &block) end # Return a colour as identified by the colour name, or by hex. def by_css(name_or_hex, &block) by_name(name_or_hex) { by_hex(name_or_hex, &block) } end # Extract named or hex colours from the provided text. def extract_colors(text, mode = :both) text = text.downcase regex = case mode when :name Regexp.union(__by_name.keys) when :hex Regexp.union(__by_hex.keys) when :both Regexp.union(__by_hex.keys + __by_name.keys) end text.scan(regex).map { |match| case mode when :name by_name(match) when :hex by_hex(match) when :both by_css(match) end } end end class << Color::RGB private def __named_color(mod, rgb, *names) used = names - mod.constants.map(&:to_sym) if used.length < names.length raise ArgumentError, "#{names.join(', ')} already defined in #{mod}" end names.each { |n| mod.const_set(n, rgb) } rgb.names = names rgb.names.each { |n| __by_name[n] = rgb } __by_hex[rgb.hex] = rgb rgb.freeze end def __by_hex @__by_hex ||= {} end def __by_name @__by_name ||= {} end def html_hexify(hex) # When we can move to 1.9+ only, this will be \h h = hex.to_s.downcase.scan(/[0-9a-f]/) case h.size when 3 h.map { |v| (v * 2) }.join when 6 h.join else raise ArgumentError, "Not a supported HTML colour type." end end end require 'atome/helpers/color_helper/color/rgb/colors'