/* Copyright Joyent, Inc. and other Node contributors. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "uv.h" #include "internal.h" #include #include #include #include #include #include #include #include #include #if defined(__APPLE__) && !TARGET_OS_IPHONE # include # define environ (*_NSGetEnviron()) #else extern char **environ; #endif static QUEUE* uv__process_queue(uv_loop_t* loop, int pid) { assert(pid > 0); return loop->process_handles + pid % ARRAY_SIZE(loop->process_handles); } static uv_process_t* uv__process_find(uv_loop_t* loop, int pid) { uv_process_t* handle; QUEUE* h; QUEUE* q; h = uv__process_queue(loop, pid); QUEUE_FOREACH(q, h) { handle = QUEUE_DATA(q, uv_process_t, queue); if (handle->pid == pid) return handle; } return NULL; } static void uv__chld(uv_signal_t* handle, int signum) { uv_process_t* process; int exit_status; int term_signal; int status; pid_t pid; assert(signum == SIGCHLD); for (;;) { pid = waitpid(-1, &status, WNOHANG); if (pid == 0) return; if (pid == -1) { if (errno == ECHILD) return; /* XXX stop signal watcher? */ else abort(); } process = uv__process_find(handle->loop, pid); if (process == NULL) continue; /* XXX bug? abort? */ uv__handle_stop(process); if (process->exit_cb == NULL) continue; exit_status = 0; term_signal = 0; if (WIFEXITED(status)) exit_status = WEXITSTATUS(status); if (WIFSIGNALED(status)) term_signal = WTERMSIG(status); if (process->errorno) exit_status = process->errorno; /* execve() failed */ process->exit_cb(process, exit_status, term_signal); } } int uv__make_socketpair(int fds[2], int flags) { #if defined(__linux__) static int no_cloexec; if (no_cloexec) goto skip; if (socketpair(AF_UNIX, SOCK_STREAM | UV__SOCK_CLOEXEC | flags, 0, fds) == 0) return 0; /* Retry on EINVAL, it means SOCK_CLOEXEC is not supported. * Anything else is a genuine error. */ if (errno != EINVAL) return -errno; no_cloexec = 1; skip: #endif if (socketpair(AF_UNIX, SOCK_STREAM, 0, fds)) return -errno; uv__cloexec(fds[0], 1); uv__cloexec(fds[1], 1); if (flags & UV__F_NONBLOCK) { uv__nonblock(fds[0], 1); uv__nonblock(fds[1], 1); } return 0; } int uv__make_pipe(int fds[2], int flags) { #if defined(__linux__) static int no_pipe2; if (no_pipe2) goto skip; if (uv__pipe2(fds, flags | UV__O_CLOEXEC) == 0) return 0; if (errno != ENOSYS) return -errno; no_pipe2 = 1; skip: #endif if (pipe(fds)) return -errno; uv__cloexec(fds[0], 1); uv__cloexec(fds[1], 1); if (flags & UV__F_NONBLOCK) { uv__nonblock(fds[0], 1); uv__nonblock(fds[1], 1); } return 0; } /* * Used for initializing stdio streams like options.stdin_stream. Returns * zero on success. */ static int uv__process_init_stdio(uv_stdio_container_t* container, int fds[2]) { int mask; int fd; mask = UV_IGNORE | UV_CREATE_PIPE | UV_INHERIT_FD | UV_INHERIT_STREAM; switch (container->flags & mask) { case UV_IGNORE: return 0; case UV_CREATE_PIPE: assert(container->data.stream != NULL); if (container->data.stream->type != UV_NAMED_PIPE) return -EINVAL; else return uv__make_socketpair(fds, 0); case UV_INHERIT_FD: case UV_INHERIT_STREAM: if (container->flags & UV_INHERIT_FD) fd = container->data.fd; else fd = uv__stream_fd(container->data.stream); if (fd == -1) return -EINVAL; fds[1] = fd; return 0; default: assert(0 && "Unexpected flags"); return -EINVAL; } } static int uv__process_open_stream(uv_stdio_container_t* container, int pipefds[2], int writable) { int flags; if (!(container->flags & UV_CREATE_PIPE) || pipefds[0] < 0) return 0; if (close(pipefds[1])) if (errno != EINTR && errno != EINPROGRESS) abort(); pipefds[1] = -1; uv__nonblock(pipefds[0], 1); if (container->data.stream->type == UV_NAMED_PIPE && ((uv_pipe_t*)container->data.stream)->ipc) flags = UV_STREAM_READABLE | UV_STREAM_WRITABLE; else if (writable) flags = UV_STREAM_WRITABLE; else flags = UV_STREAM_READABLE; return uv__stream_open(container->data.stream, pipefds[0], flags); } static void uv__process_close_stream(uv_stdio_container_t* container) { if (!(container->flags & UV_CREATE_PIPE)) return; uv__stream_close((uv_stream_t*)container->data.stream); } static void uv__write_int(int fd, int val) { ssize_t n; do n = write(fd, &val, sizeof(val)); while (n == -1 && errno == EINTR); if (n == -1 && errno == EPIPE) return; /* parent process has quit */ assert(n == sizeof(val)); } static void uv__process_child_init(uv_process_options_t options, int stdio_count, int (*pipes)[2], int error_fd) { int close_fd; int use_fd; int fd; if (options.flags & UV_PROCESS_DETACHED) setsid(); for (fd = 0; fd < stdio_count; fd++) { close_fd = pipes[fd][0]; use_fd = pipes[fd][1]; if (use_fd >= 0) close(close_fd); else if (fd >= 3) continue; else { /* redirect stdin, stdout and stderr to /dev/null even if UV_IGNORE is * set */ use_fd = open("/dev/null", fd == 0 ? O_RDONLY : O_RDWR); if (use_fd == -1) { uv__write_int(error_fd, -errno); perror("failed to open stdio"); _exit(127); } } if (fd == use_fd) uv__cloexec(use_fd, 0); else { dup2(use_fd, fd); close(use_fd); } if (fd <= 2) uv__nonblock(fd, 0); } if (options.cwd && chdir(options.cwd)) { uv__write_int(error_fd, -errno); perror("chdir()"); _exit(127); } if ((options.flags & UV_PROCESS_SETGID) && setgid(options.gid)) { uv__write_int(error_fd, -errno); perror("setgid()"); _exit(127); } if ((options.flags & UV_PROCESS_SETUID) && setuid(options.uid)) { uv__write_int(error_fd, -errno); perror("setuid()"); _exit(127); } if (options.env) { environ = options.env; } execvp(options.file, options.args); uv__write_int(error_fd, -errno); perror("execvp()"); _exit(127); } int uv_spawn(uv_loop_t* loop, uv_process_t* process, const uv_process_options_t options) { int signal_pipe[2] = { -1, -1 }; int (*pipes)[2]; int stdio_count; QUEUE* q; ssize_t r; pid_t pid; int err; int i; assert(options.file != NULL); assert(!(options.flags & ~(UV_PROCESS_DETACHED | UV_PROCESS_SETGID | UV_PROCESS_SETUID | UV_PROCESS_WINDOWS_HIDE | UV_PROCESS_WINDOWS_VERBATIM_ARGUMENTS))); uv__handle_init(loop, (uv_handle_t*)process, UV_PROCESS); QUEUE_INIT(&process->queue); stdio_count = options.stdio_count; if (stdio_count < 3) stdio_count = 3; err = -ENOMEM; pipes = malloc(stdio_count * sizeof(*pipes)); if (pipes == NULL) goto error; for (i = 0; i < stdio_count; i++) { pipes[i][0] = -1; pipes[i][1] = -1; } for (i = 0; i < options.stdio_count; i++) { err = uv__process_init_stdio(options.stdio + i, pipes[i]); if (err) goto error; } /* This pipe is used by the parent to wait until * the child has called `execve()`. We need this * to avoid the following race condition: * * if ((pid = fork()) > 0) { * kill(pid, SIGTERM); * } * else if (pid == 0) { * execve("/bin/cat", argp, envp); * } * * The parent sends a signal immediately after forking. * Since the child may not have called `execve()` yet, * there is no telling what process receives the signal, * our fork or /bin/cat. * * To avoid ambiguity, we create a pipe with both ends * marked close-on-exec. Then, after the call to `fork()`, * the parent polls the read end until it EOFs or errors with EPIPE. */ err = uv__make_pipe(signal_pipe, 0); if (err) goto error; uv_signal_start(&loop->child_watcher, uv__chld, SIGCHLD); pid = fork(); if (pid == -1) { err = -errno; close(signal_pipe[0]); close(signal_pipe[1]); goto error; } if (pid == 0) { uv__process_child_init(options, stdio_count, pipes, signal_pipe[1]); abort(); } close(signal_pipe[1]); process->errorno = 0; do r = read(signal_pipe[0], &process->errorno, sizeof(process->errorno)); while (r == -1 && errno == EINTR); if (r == 0) ; /* okay, EOF */ else if (r == sizeof(process->errorno)) ; /* okay, read errorno */ else if (r == -1 && errno == EPIPE) ; /* okay, got EPIPE */ else abort(); close(signal_pipe[0]); for (i = 0; i < options.stdio_count; i++) { err = uv__process_open_stream(options.stdio + i, pipes[i], i == 0); if (err == 0) continue; while (i--) uv__process_close_stream(options.stdio + i); goto error; } q = uv__process_queue(loop, pid); QUEUE_INSERT_TAIL(q, &process->queue); process->pid = pid; process->exit_cb = options.exit_cb; uv__handle_start(process); free(pipes); return 0; error: for (i = 0; i < stdio_count; i++) { close(pipes[i][0]); close(pipes[i][1]); } free(pipes); return err; } int uv_process_kill(uv_process_t* process, int signum) { return uv_kill(process->pid, signum); } int uv_kill(int pid, int signum) { if (kill(pid, signum)) return -errno; else return 0; } void uv__process_close(uv_process_t* handle) { /* TODO stop signal watcher when this is the last handle */ QUEUE_REMOVE(&handle->queue); uv__handle_stop(handle); }