#!/usr/bin/env ruby # encoding: utf-8 require 'json' require 'set' require 'digest/md5' module Ebooks class Model attr_accessor :hash, :sentences, :mentions, :keywords def self.consume(txtpath) Model.new.consume(txtpath) end def self.load(path) Marshal.load(File.read(path)) end def consume(txtpath) # Record hash of source file so we know to update later @hash = Digest::MD5.hexdigest(File.read(txtpath)) text = File.read(txtpath) log "Removing commented lines and sorting mentions" lines = text.split("\n") keeping = [] mentions = [] lines.each do |l| next if l.start_with?('#') # Remove commented lines next if l.include?('RT') || l.include?('MT') # Remove soft retweets if l.include?('@') mentions << l else keeping << l end end text = NLP.normalize(keeping.join("\n")) # Normalize weird characters mention_text = NLP.normalize(mentions.join("\n")) log "Segmenting text into sentences" statements = NLP.sentences(text) mentions = NLP.sentences(mention_text) log "Tokenizing #{statements.length} statements and #{mentions.length} mentions" @sentences = [] @mentions = [] statements.each do |s| @sentences << NLP.tokenize(s).reject do |t| t.start_with?('@') || t.start_with?('http') end end mentions.each do |s| @mentions << NLP.tokenize(s).reject do |t| t.start_with?('@') || t.start_with?('http') end end log "Ranking keywords" @keywords = NLP.keywords(@sentences) self end def save(path) File.open(path, 'w') do |f| f.write(Marshal.dump(self)) end self end def fix(tweet) # This seems to require an external api call #begin # fixer = NLP.gingerice.parse(tweet) # log fixer if fixer['corrections'] # tweet = fixer['result'] #rescue Exception => e # log e.message # log e.backtrace #end NLP.htmlentities.decode tweet end def valid_tweet?(tokens, limit) tweet = NLP.reconstruct(tokens) tweet.length <= limit && !NLP.unmatched_enclosers?(tweet) end def make_statement(limit=140, generator=nil, retry_limit=10) responding = !generator.nil? generator ||= SuffixGenerator.build(@sentences) retries = 0 tweet = "" while (tokens = generator.generate(3, :bigrams)) do next if tokens.length <= 3 && !responding break if valid_tweet?(tokens, limit) retries += 1 break if retries >= retry_limit end if verbatim?(tokens) && tokens.length > 3 # We made a verbatim tweet by accident while (tokens = generator.generate(3, :unigrams)) do break if valid_tweet?(tokens, limit) && !verbatim?(tokens) retries += 1 break if retries >= retry_limit end end tweet = NLP.reconstruct(tokens) if retries >= retry_limit log "Unable to produce valid non-verbatim tweet; using \"#{tweet}\"" end fix tweet end # Test if a sentence has been copied verbatim from original def verbatim?(tokens) @sentences.include?(tokens) || @mentions.include?(tokens) end # Finds all relevant tokenized sentences to given input by # comparing non-stopword token overlaps def find_relevant(sentences, input) relevant = [] slightly_relevant = [] tokenized = NLP.tokenize(input).map(&:downcase) sentences.each do |sent| tokenized.each do |token| if sent.map(&:downcase).include?(token) relevant << sent unless NLP.stopword?(token) slightly_relevant << sent end end end [relevant, slightly_relevant] end # Generates a response by looking for related sentences # in the corpus and building a smaller generator from these def make_response(input, limit=140, sentences=@mentions) # Prefer mentions relevant, slightly_relevant = find_relevant(sentences, input) if relevant.length >= 3 generator = SuffixGenerator.build(relevant) make_statement(limit, generator) elsif slightly_relevant.length >= 5 generator = SuffixGenerator.build(slightly_relevant) make_statement(limit, generator) elsif sentences.equal?(@mentions) make_response(input, limit, @sentences) else make_statement(limit) end end end end