/********************************************************************** hash.c - $Author: yugui $ created at: Mon Nov 22 18:51:18 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto Copyright (C) 2000 Network Applied Communication Laboratory, Inc. Copyright (C) 2000 Information-technology Promotion Agency, Japan **********************************************************************/ #include "ruby/ruby.h" #include "ruby/st.h" #include "ruby/util.h" #include #ifdef __APPLE__ #include #endif static VALUE rb_hash_s_try_convert(VALUE, VALUE); #define HASH_DELETED FL_USER1 #define HASH_PROC_DEFAULT FL_USER2 VALUE rb_hash_freeze(VALUE hash) { return rb_obj_freeze(hash); } VALUE rb_cHash; static VALUE envtbl; static ID id_hash, id_yield, id_default; static int rb_any_cmp(VALUE a, VALUE b) { if (a == b) return 0; if (FIXNUM_P(a) && FIXNUM_P(b)) { return a != b; } if (TYPE(a) == T_STRING && RBASIC(a)->klass == rb_cString && TYPE(b) == T_STRING && RBASIC(b)->klass == rb_cString) { return rb_str_hash_cmp(a, b); } if (a == Qundef || b == Qundef) return -1; if (SYMBOL_P(a) && SYMBOL_P(b)) { return a != b; } return !rb_eql(a, b); } VALUE rb_hash(VALUE obj) { VALUE hval = rb_funcall(obj, id_hash, 0); retry: switch (TYPE(hval)) { case T_FIXNUM: return hval; case T_BIGNUM: return LONG2FIX(((long*)(RBIGNUM_DIGITS(hval)))[0]); default: hval = rb_to_int(hval); goto retry; } } static st_index_t rb_any_hash(VALUE a) { VALUE hval; st_index_t hnum; switch (TYPE(a)) { case T_FIXNUM: case T_SYMBOL: case T_NIL: case T_FALSE: case T_TRUE: hnum = rb_hash_end(rb_hash_start((unsigned int)a)); break; case T_STRING: hnum = rb_str_hash(a); break; default: hval = rb_hash(a); hnum = FIX2LONG(hval); } hnum <<= 1; return (st_index_t)RSHIFT(hnum, 1); } static const struct st_hash_type objhash = { rb_any_cmp, rb_any_hash, }; static const struct st_hash_type identhash = { st_numcmp, st_numhash, }; typedef int st_foreach_func(st_data_t, st_data_t, st_data_t); struct foreach_safe_arg { st_table *tbl; st_foreach_func *func; st_data_t arg; }; static int foreach_safe_i(st_data_t key, st_data_t value, struct foreach_safe_arg *arg) { int status; if (key == Qundef) return ST_CONTINUE; status = (*arg->func)(key, value, arg->arg); if (status == ST_CONTINUE) { return ST_CHECK; } return status; } void st_foreach_safe(st_table *table, int (*func)(ANYARGS), st_data_t a) { struct foreach_safe_arg arg; arg.tbl = table; arg.func = (st_foreach_func *)func; arg.arg = a; if (st_foreach(table, foreach_safe_i, (st_data_t)&arg)) { rb_raise(rb_eRuntimeError, "hash modified during iteration"); } } typedef int rb_foreach_func(VALUE, VALUE, VALUE); struct hash_foreach_arg { VALUE hash; rb_foreach_func *func; VALUE arg; }; static int hash_foreach_iter(st_data_t key, st_data_t value, struct hash_foreach_arg *arg) { int status; st_table *tbl; tbl = RHASH(arg->hash)->ntbl; if ((VALUE)key == Qundef) return ST_CONTINUE; status = (*arg->func)((VALUE)key, (VALUE)value, arg->arg); if (RHASH(arg->hash)->ntbl != tbl) { rb_raise(rb_eRuntimeError, "rehash occurred during iteration"); } switch (status) { case ST_DELETE: st_delete_safe(tbl, &key, 0, Qundef); FL_SET(arg->hash, HASH_DELETED); case ST_CONTINUE: break; case ST_STOP: return ST_STOP; } return ST_CHECK; } static VALUE hash_foreach_ensure(VALUE hash) { RHASH(hash)->iter_lev--; if (RHASH(hash)->iter_lev == 0) { if (FL_TEST(hash, HASH_DELETED)) { st_cleanup_safe(RHASH(hash)->ntbl, Qundef); FL_UNSET(hash, HASH_DELETED); } } return 0; } static VALUE hash_foreach_call(struct hash_foreach_arg *arg) { if (st_foreach(RHASH(arg->hash)->ntbl, hash_foreach_iter, (st_data_t)arg)) { rb_raise(rb_eRuntimeError, "hash modified during iteration"); } return Qnil; } void rb_hash_foreach(VALUE hash, int (*func)(ANYARGS), VALUE farg) { struct hash_foreach_arg arg; if (!RHASH(hash)->ntbl) return; RHASH(hash)->iter_lev++; arg.hash = hash; arg.func = (rb_foreach_func *)func; arg.arg = farg; rb_ensure(hash_foreach_call, (VALUE)&arg, hash_foreach_ensure, hash); } static VALUE hash_alloc(VALUE klass) { NEWOBJ(hash, struct RHash); OBJSETUP(hash, klass, T_HASH); RHASH_IFNONE(hash) = Qnil; return (VALUE)hash; } VALUE rb_hash_new(void) { return hash_alloc(rb_cHash); } VALUE rb_hash_dup(VALUE hash) { NEWOBJ(ret, struct RHash); DUPSETUP(ret, hash); if (!RHASH_EMPTY_P(hash)) ret->ntbl = st_copy(RHASH(hash)->ntbl); if (FL_TEST(hash, HASH_PROC_DEFAULT)) { FL_SET(ret, HASH_PROC_DEFAULT); } RHASH_IFNONE(ret) = RHASH_IFNONE(hash); return (VALUE)ret; } static void rb_hash_modify_check(VALUE hash) { if (OBJ_FROZEN(hash)) rb_error_frozen("hash"); if (!OBJ_UNTRUSTED(hash) && rb_safe_level() >= 4) rb_raise(rb_eSecurityError, "Insecure: can't modify hash"); } struct st_table * rb_hash_tbl(VALUE hash) { if (!RHASH(hash)->ntbl) { RHASH(hash)->ntbl = st_init_table(&objhash); } return RHASH(hash)->ntbl; } static void rb_hash_modify(VALUE hash) { rb_hash_modify_check(hash); rb_hash_tbl(hash); } static void hash_update(VALUE hash, VALUE key) { if (RHASH(hash)->iter_lev > 0 && !st_lookup(RHASH(hash)->ntbl, key, 0)) { rb_raise(rb_eRuntimeError, "can't add a new key into hash during iteration"); } } static void default_proc_arity_check(VALUE proc) { int n = rb_proc_arity(proc); if (rb_proc_lambda_p(proc) && n != 2 && (n >= 0 || n < -3)) { if (n < 0) n = -n-1; rb_raise(rb_eTypeError, "default_proc takes two arguments (2 for %d)", n); } } /* * call-seq: * Hash.new -> new_hash * Hash.new(obj) -> new_hash * Hash.new {|hash, key| block } -> new_hash * * Returns a new, empty hash. If this hash is subsequently accessed by * a key that doesn't correspond to a hash entry, the value returned * depends on the style of new used to create the hash. In * the first form, the access returns nil. If * obj is specified, this single object will be used for * all default values. If a block is specified, it will be * called with the hash object and the key, and should return the * default value. It is the block's responsibility to store the value * in the hash if required. * * h = Hash.new("Go Fish") * h["a"] = 100 * h["b"] = 200 * h["a"] #=> 100 * h["c"] #=> "Go Fish" * # The following alters the single default object * h["c"].upcase! #=> "GO FISH" * h["d"] #=> "GO FISH" * h.keys #=> ["a", "b"] * * # While this creates a new default object each time * h = Hash.new { |hash, key| hash[key] = "Go Fish: #{key}" } * h["c"] #=> "Go Fish: c" * h["c"].upcase! #=> "GO FISH: C" * h["d"] #=> "Go Fish: d" * h.keys #=> ["c", "d"] * */ static VALUE rb_hash_initialize(int argc, VALUE *argv, VALUE hash) { VALUE ifnone; rb_hash_modify(hash); if (rb_block_given_p()) { if (argc > 0) { rb_raise(rb_eArgError, "wrong number of arguments"); } ifnone = rb_block_proc(); default_proc_arity_check(ifnone); RHASH_IFNONE(hash) = ifnone; FL_SET(hash, HASH_PROC_DEFAULT); } else { rb_scan_args(argc, argv, "01", &ifnone); RHASH_IFNONE(hash) = ifnone; } return hash; } /* * call-seq: * Hash[ key, value, ... ] -> new_hash * Hash[ [ [key, value], ... ] ] -> new_hash * Hash[ object ] -> new_hash * * Creates a new hash populated with the given objects. Equivalent to * the literal { key => value, ... }. In the first * form, keys and values occur in pairs, so there must be an even number of arguments. * The second and third form take a single argument which is either * an array of key-value pairs or an object convertible to a hash. * * Hash["a", 100, "b", 200] #=> {"a"=>100, "b"=>200} * Hash[ [ ["a", 100], ["b", 200] ] ] #=> {"a"=>100, "b"=>200} * Hash["a" => 100, "b" => 200] #=> {"a"=>100, "b"=>200} */ static VALUE rb_hash_s_create(int argc, VALUE *argv, VALUE klass) { VALUE hash, tmp; int i; if (argc == 1) { tmp = rb_hash_s_try_convert(Qnil, argv[0]); if (!NIL_P(tmp)) { hash = hash_alloc(klass); if (RHASH(tmp)->ntbl) { RHASH(hash)->ntbl = st_copy(RHASH(tmp)->ntbl); } return hash; } tmp = rb_check_array_type(argv[0]); if (!NIL_P(tmp)) { long i; hash = hash_alloc(klass); for (i = 0; i < RARRAY_LEN(tmp); ++i) { VALUE v = rb_check_array_type(RARRAY_PTR(tmp)[i]); VALUE key, val = Qnil; if (NIL_P(v)) continue; switch (RARRAY_LEN(v)) { case 2: val = RARRAY_PTR(v)[1]; case 1: key = RARRAY_PTR(v)[0]; rb_hash_aset(hash, key, val); } } return hash; } } if (argc % 2 != 0) { rb_raise(rb_eArgError, "odd number of arguments for Hash"); } hash = hash_alloc(klass); for (i=0; i hash or nil * * Try to convert obj into a hash, using to_hash method. * Returns converted hash or nil if obj cannot be converted * for any reason. * * Hash.try_convert({1=>2}) # => {1=>2} * Hash.try_convert("1=>2") # => nil */ static VALUE rb_hash_s_try_convert(VALUE dummy, VALUE hash) { return rb_check_convert_type(hash, T_HASH, "Hash", "to_hash"); } static int rb_hash_rehash_i(VALUE key, VALUE value, VALUE arg) { st_table *tbl = (st_table *)arg; if (key != Qundef) st_insert(tbl, key, value); return ST_CONTINUE; } /* * call-seq: * hsh.rehash -> hsh * * Rebuilds the hash based on the current hash values for each key. If * values of key objects have changed since they were inserted, this * method will reindex hsh. If Hash#rehash is * called while an iterator is traversing the hash, an * RuntimeError will be raised in the iterator. * * a = [ "a", "b" ] * c = [ "c", "d" ] * h = { a => 100, c => 300 } * h[a] #=> 100 * a[0] = "z" * h[a] #=> nil * h.rehash #=> {["z", "b"]=>100, ["c", "d"]=>300} * h[a] #=> 100 */ static VALUE rb_hash_rehash(VALUE hash) { st_table *tbl; if (RHASH(hash)->iter_lev > 0) { rb_raise(rb_eRuntimeError, "rehash during iteration"); } rb_hash_modify_check(hash); if (!RHASH(hash)->ntbl) return hash; tbl = st_init_table_with_size(RHASH(hash)->ntbl->type, RHASH(hash)->ntbl->num_entries); rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tbl); st_free_table(RHASH(hash)->ntbl); RHASH(hash)->ntbl = tbl; return hash; } /* * call-seq: * hsh[key] -> value * * Element Reference---Retrieves the value object corresponding * to the key object. If not found, returns the default value (see * Hash::new for details). * * h = { "a" => 100, "b" => 200 } * h["a"] #=> 100 * h["c"] #=> nil * */ VALUE rb_hash_aref(VALUE hash, VALUE key) { VALUE val; if (!RHASH(hash)->ntbl || !st_lookup(RHASH(hash)->ntbl, key, &val)) { return rb_funcall(hash, id_default, 1, key); } return val; } VALUE rb_hash_lookup2(VALUE hash, VALUE key, VALUE def) { VALUE val; if (!RHASH(hash)->ntbl || !st_lookup(RHASH(hash)->ntbl, key, &val)) { return def; /* without Hash#default */ } return val; } VALUE rb_hash_lookup(VALUE hash, VALUE key) { return rb_hash_lookup2(hash, key, Qnil); } /* * call-seq: * hsh.fetch(key [, default] ) -> obj * hsh.fetch(key) {| key | block } -> obj * * Returns a value from the hash for the given key. If the key can't be * found, there are several options: With no other arguments, it will * raise an KeyError exception; if default is * given, then that will be returned; if the optional code block is * specified, then that will be run and its result returned. * * h = { "a" => 100, "b" => 200 } * h.fetch("a") #=> 100 * h.fetch("z", "go fish") #=> "go fish" * h.fetch("z") { |el| "go fish, #{el}"} #=> "go fish, z" * * The following example shows that an exception is raised if the key * is not found and a default value is not supplied. * * h = { "a" => 100, "b" => 200 } * h.fetch("z") * * produces: * * prog.rb:2:in `fetch': key not found (KeyError) * from prog.rb:2 * */ static VALUE rb_hash_fetch_m(int argc, VALUE *argv, VALUE hash) { VALUE key, if_none; VALUE val; long block_given; rb_scan_args(argc, argv, "11", &key, &if_none); block_given = rb_block_given_p(); if (block_given && argc == 2) { rb_warn("block supersedes default value argument"); } if (!RHASH(hash)->ntbl || !st_lookup(RHASH(hash)->ntbl, key, &val)) { if (block_given) return rb_yield(key); if (argc == 1) { volatile VALUE desc = rb_protect(rb_inspect, key, 0); if (NIL_P(desc) || RSTRING_LEN(desc) > 65) { desc = rb_any_to_s(key); } rb_raise(rb_eKeyError, "key not found: %s", RSTRING_PTR(desc)); } return if_none; } return val; } VALUE rb_hash_fetch(VALUE hash, VALUE key) { return rb_hash_fetch_m(1, &key, hash); } /* * call-seq: * hsh.default(key=nil) -> obj * * Returns the default value, the value that would be returned by * hsh[key] if key did not exist in hsh. * See also Hash::new and Hash#default=. * * h = Hash.new #=> {} * h.default #=> nil * h.default(2) #=> nil * * h = Hash.new("cat") #=> {} * h.default #=> "cat" * h.default(2) #=> "cat" * * h = Hash.new {|h,k| h[k] = k.to_i*10} #=> {} * h.default #=> nil * h.default(2) #=> 20 */ static VALUE rb_hash_default(int argc, VALUE *argv, VALUE hash) { VALUE key, ifnone; rb_scan_args(argc, argv, "01", &key); ifnone = RHASH_IFNONE(hash); if (FL_TEST(hash, HASH_PROC_DEFAULT)) { if (argc == 0) return Qnil; return rb_funcall(ifnone, id_yield, 2, hash, key); } return ifnone; } /* * call-seq: * hsh.default = obj -> obj * * Sets the default value, the value returned for a key that does not * exist in the hash. It is not possible to set the default to a * Proc that will be executed on each key lookup. * * h = { "a" => 100, "b" => 200 } * h.default = "Go fish" * h["a"] #=> 100 * h["z"] #=> "Go fish" * # This doesn't do what you might hope... * h.default = proc do |hash, key| * hash[key] = key + key * end * h[2] #=> # * h["cat"] #=> # */ static VALUE rb_hash_set_default(VALUE hash, VALUE ifnone) { rb_hash_modify(hash); RHASH_IFNONE(hash) = ifnone; FL_UNSET(hash, HASH_PROC_DEFAULT); return ifnone; } /* * call-seq: * hsh.default_proc -> anObject * * If Hash::new was invoked with a block, return that * block, otherwise return nil. * * h = Hash.new {|h,k| h[k] = k*k } #=> {} * p = h.default_proc #=> # * a = [] #=> [] * p.call(a, 2) * a #=> [nil, nil, 4] */ static VALUE rb_hash_default_proc(VALUE hash) { if (FL_TEST(hash, HASH_PROC_DEFAULT)) { return RHASH_IFNONE(hash); } return Qnil; } VALUE rb_obj_is_proc(VALUE proc); /* * call-seq: * hsh.default_proc = proc_obj -> proc_obj * * Sets the default proc to be executed on each key lookup. * * h.default_proc = proc do |hash, key| * hash[key] = key + key * end * h[2] #=> 4 * h["cat"] #=> "catcat" */ static VALUE rb_hash_set_default_proc(VALUE hash, VALUE proc) { VALUE b; rb_hash_modify(hash); b = rb_check_convert_type(proc, T_DATA, "Proc", "to_proc"); if (NIL_P(b) || !rb_obj_is_proc(b)) { rb_raise(rb_eTypeError, "wrong default_proc type %s (expected Proc)", rb_obj_classname(proc)); } proc = b; default_proc_arity_check(proc); RHASH_IFNONE(hash) = proc; FL_SET(hash, HASH_PROC_DEFAULT); return proc; } static int key_i(VALUE key, VALUE value, VALUE arg) { VALUE *args = (VALUE *)arg; if (rb_equal(value, args[0])) { args[1] = key; return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hsh.key(value) -> key * * Returns the key for a given value. If not found, returns nil. * * h = { "a" => 100, "b" => 200 } * h.key(200) #=> "b" * h.key(999) #=> nil * */ static VALUE rb_hash_key(VALUE hash, VALUE value) { VALUE args[2]; args[0] = value; args[1] = Qnil; rb_hash_foreach(hash, key_i, (VALUE)args); return args[1]; } /* :nodoc: */ static VALUE rb_hash_index(VALUE hash, VALUE value) { rb_warn("Hash#index is deprecated; use Hash#key"); return rb_hash_key(hash, value); } static VALUE rb_hash_delete_key(VALUE hash, VALUE key) { st_data_t ktmp = (st_data_t)key, val; if (!RHASH(hash)->ntbl) return Qundef; if (RHASH(hash)->iter_lev > 0) { if (st_delete_safe(RHASH(hash)->ntbl, &ktmp, &val, Qundef)) { FL_SET(hash, HASH_DELETED); return (VALUE)val; } } else if (st_delete(RHASH(hash)->ntbl, &ktmp, &val)) return (VALUE)val; return Qundef; } /* * call-seq: * hsh.delete(key) -> value * hsh.delete(key) {| key | block } -> value * * Deletes and returns a key-value pair from hsh whose key is * equal to key. If the key is not found, returns the * default value. If the optional code block is given and the * key is not found, pass in the key and return the result of * block. * * h = { "a" => 100, "b" => 200 } * h.delete("a") #=> 100 * h.delete("z") #=> nil * h.delete("z") { |el| "#{el} not found" } #=> "z not found" * */ VALUE rb_hash_delete(VALUE hash, VALUE key) { VALUE val; rb_hash_modify(hash); val = rb_hash_delete_key(hash, key); if (val != Qundef) return val; if (rb_block_given_p()) { return rb_yield(key); } return Qnil; } struct shift_var { VALUE key; VALUE val; }; static int shift_i(VALUE key, VALUE value, VALUE arg) { struct shift_var *var = (struct shift_var *)arg; if (key == Qundef) return ST_CONTINUE; if (var->key != Qundef) return ST_STOP; var->key = key; var->val = value; return ST_DELETE; } static int shift_i_safe(VALUE key, VALUE value, VALUE arg) { struct shift_var *var = (struct shift_var *)arg; if (key == Qundef) return ST_CONTINUE; var->key = key; var->val = value; return ST_STOP; } /* * call-seq: * hsh.shift -> anArray or obj * * Removes a key-value pair from hsh and returns it as the * two-item array [ key, value ], or * the hash's default value if the hash is empty. * * h = { 1 => "a", 2 => "b", 3 => "c" } * h.shift #=> [1, "a"] * h #=> {2=>"b", 3=>"c"} */ static VALUE rb_hash_shift(VALUE hash) { struct shift_var var; rb_hash_modify(hash); var.key = Qundef; rb_hash_foreach(hash, RHASH(hash)->iter_lev > 0 ? shift_i_safe : shift_i, (VALUE)&var); if (var.key != Qundef) { if (RHASH(hash)->iter_lev > 0) { rb_hash_delete_key(hash, var.key); } return rb_assoc_new(var.key, var.val); } else if (FL_TEST(hash, HASH_PROC_DEFAULT)) { return rb_funcall(RHASH_IFNONE(hash), id_yield, 2, hash, Qnil); } else { return RHASH_IFNONE(hash); } } static int delete_if_i(VALUE key, VALUE value, VALUE hash) { if (key == Qundef) return ST_CONTINUE; if (RTEST(rb_yield_values(2, key, value))) { rb_hash_delete_key(hash, key); } return ST_CONTINUE; } /* * call-seq: * hsh.delete_if {| key, value | block } -> hsh * hsh.delete_if -> an_enumerator * * Deletes every key-value pair from hsh for which block * evaluates to true. * * If no block is given, an enumerator is returned instead. * * h = { "a" => 100, "b" => 200, "c" => 300 } * h.delete_if {|key, value| key >= "b" } #=> {"a"=>100} * */ VALUE rb_hash_delete_if(VALUE hash) { RETURN_ENUMERATOR(hash, 0, 0); rb_hash_modify(hash); rb_hash_foreach(hash, delete_if_i, hash); return hash; } /* * call-seq: * hsh.reject! {| key, value | block } -> hsh or nil * hsh.reject! -> an_enumerator * * Equivalent to Hash#delete_if, but returns * nil if no changes were made. */ VALUE rb_hash_reject_bang(VALUE hash) { st_index_t n; RETURN_ENUMERATOR(hash, 0, 0); rb_hash_modify(hash); if (!RHASH(hash)->ntbl) return Qnil; n = RHASH(hash)->ntbl->num_entries; rb_hash_foreach(hash, delete_if_i, hash); if (n == RHASH(hash)->ntbl->num_entries) return Qnil; return hash; } /* * call-seq: * hsh.reject {| key, value | block } -> a_hash * * Same as Hash#delete_if, but works on (and returns) a * copy of the hsh. Equivalent to * hsh.dup.delete_if. * */ static VALUE rb_hash_reject(VALUE hash) { return rb_hash_delete_if(rb_obj_dup(hash)); } /* * call-seq: * hsh.values_at(key, ...) -> array * * Return an array containing the values associated with the given keys. * Also see Hash.select. * * h = { "cat" => "feline", "dog" => "canine", "cow" => "bovine" } * h.values_at("cow", "cat") #=> ["bovine", "feline"] */ VALUE rb_hash_values_at(int argc, VALUE *argv, VALUE hash) { VALUE result = rb_ary_new2(argc); long i; for (i=0; i a_hash * hsh.select -> an_enumerator * * Returns a new hash consisting of entries for which the block returns true. * * If no block is given, an enumerator is returned instead. * * h = { "a" => 100, "b" => 200, "c" => 300 } * h.select {|k,v| k > "a"} #=> {"b" => 200, "c" => 300} * h.select {|k,v| v < 200} #=> {"a" => 100} */ VALUE rb_hash_select(VALUE hash) { VALUE result; RETURN_ENUMERATOR(hash, 0, 0); result = rb_hash_new(); rb_hash_foreach(hash, select_i, result); return result; } static int keep_if_i(VALUE key, VALUE value, VALUE hash) { if (key == Qundef) return ST_CONTINUE; if (!RTEST(rb_yield_values(2, key, value))) { return ST_DELETE; } return ST_CONTINUE; } /* * call-seq: * hsh.select! {| key, value | block } -> hsh or nil * hsh.select! -> an_enumerator * * Equivalent to Hash#keep_if, but returns * nil if no changes were made. */ VALUE rb_hash_select_bang(VALUE hash) { st_index_t n; RETURN_ENUMERATOR(hash, 0, 0); rb_hash_modify(hash); if (!RHASH(hash)->ntbl) return Qnil; n = RHASH(hash)->ntbl->num_entries; rb_hash_foreach(hash, keep_if_i, hash); if (n == RHASH(hash)->ntbl->num_entries) return Qnil; return hash; } /* * call-seq: * hsh.keep_if {| key, value | block } -> hsh * hsh.keep_if -> an_enumerator * * Deletes every key-value pair from hsh for which block * evaluates to false. * * If no block is given, an enumerator is returned instead. * */ VALUE rb_hash_keep_if(VALUE hash) { RETURN_ENUMERATOR(hash, 0, 0); rb_hash_modify(hash); rb_hash_foreach(hash, keep_if_i, hash); return hash; } static int clear_i(VALUE key, VALUE value, VALUE dummy) { return ST_DELETE; } /* * call-seq: * hsh.clear -> hsh * * Removes all key-value pairs from hsh. * * h = { "a" => 100, "b" => 200 } #=> {"a"=>100, "b"=>200} * h.clear #=> {} * */ static VALUE rb_hash_clear(VALUE hash) { rb_hash_modify_check(hash); if (!RHASH(hash)->ntbl) return hash; if (RHASH(hash)->ntbl->num_entries > 0) { if (RHASH(hash)->iter_lev > 0) rb_hash_foreach(hash, clear_i, 0); else st_clear(RHASH(hash)->ntbl); } return hash; } /* * call-seq: * hsh[key] = value -> value * hsh.store(key, value) -> value * * Element Assignment---Associates the value given by * value with the key given by key. * key should not have its value changed while it is in * use as a key (a String passed as a key will be * duplicated and frozen). * * h = { "a" => 100, "b" => 200 } * h["a"] = 9 * h["c"] = 4 * h #=> {"a"=>9, "b"=>200, "c"=>4} * */ VALUE rb_hash_aset(VALUE hash, VALUE key, VALUE val) { rb_hash_modify(hash); hash_update(hash, key); if (RHASH(hash)->ntbl->type == &identhash || rb_obj_class(key) != rb_cString) { st_insert(RHASH(hash)->ntbl, key, val); } else { st_insert2(RHASH(hash)->ntbl, key, val, rb_str_new4); } return val; } static int replace_i(VALUE key, VALUE val, VALUE hash) { if (key != Qundef) { rb_hash_aset(hash, key, val); } return ST_CONTINUE; } /* * call-seq: * hsh.replace(other_hash) -> hsh * * Replaces the contents of hsh with the contents of * other_hash. * * h = { "a" => 100, "b" => 200 } * h.replace({ "c" => 300, "d" => 400 }) #=> {"c"=>300, "d"=>400} * */ static VALUE rb_hash_replace(VALUE hash, VALUE hash2) { rb_hash_modify_check(hash); hash2 = to_hash(hash2); if (hash == hash2) return hash; rb_hash_clear(hash); if (RHASH(hash2)->ntbl) { rb_hash_tbl(hash); RHASH(hash)->ntbl->type = RHASH(hash2)->ntbl->type; } rb_hash_foreach(hash2, replace_i, hash); RHASH_IFNONE(hash) = RHASH_IFNONE(hash2); if (FL_TEST(hash2, HASH_PROC_DEFAULT)) { FL_SET(hash, HASH_PROC_DEFAULT); } else { FL_UNSET(hash, HASH_PROC_DEFAULT); } return hash; } /* * call-seq: * hsh.length -> fixnum * hsh.size -> fixnum * * Returns the number of key-value pairs in the hash. * * h = { "d" => 100, "a" => 200, "v" => 300, "e" => 400 } * h.length #=> 4 * h.delete("a") #=> 200 * h.length #=> 3 */ static VALUE rb_hash_size(VALUE hash) { if (!RHASH(hash)->ntbl) return INT2FIX(0); return INT2FIX(RHASH(hash)->ntbl->num_entries); } /* * call-seq: * hsh.empty? -> true or false * * Returns true if hsh contains no key-value pairs. * * {}.empty? #=> true * */ static VALUE rb_hash_empty_p(VALUE hash) { return RHASH_EMPTY_P(hash) ? Qtrue : Qfalse; } static int each_value_i(VALUE key, VALUE value) { if (key == Qundef) return ST_CONTINUE; rb_yield(value); return ST_CONTINUE; } /* * call-seq: * hsh.each_value {| value | block } -> hsh * hsh.each_value -> an_enumerator * * Calls block once for each key in hsh, passing the * value as a parameter. * * If no block is given, an enumerator is returned instead. * * h = { "a" => 100, "b" => 200 } * h.each_value {|value| puts value } * * produces: * * 100 * 200 */ static VALUE rb_hash_each_value(VALUE hash) { RETURN_ENUMERATOR(hash, 0, 0); rb_hash_foreach(hash, each_value_i, 0); return hash; } static int each_key_i(VALUE key, VALUE value) { if (key == Qundef) return ST_CONTINUE; rb_yield(key); return ST_CONTINUE; } /* * call-seq: * hsh.each_key {| key | block } -> hsh * hsh.each_key -> an_enumerator * * Calls block once for each key in hsh, passing the key * as a parameter. * * If no block is given, an enumerator is returned instead. * * h = { "a" => 100, "b" => 200 } * h.each_key {|key| puts key } * * produces: * * a * b */ static VALUE rb_hash_each_key(VALUE hash) { RETURN_ENUMERATOR(hash, 0, 0); rb_hash_foreach(hash, each_key_i, 0); return hash; } static int each_pair_i(VALUE key, VALUE value) { if (key == Qundef) return ST_CONTINUE; rb_yield(rb_assoc_new(key, value)); return ST_CONTINUE; } /* * call-seq: * hsh.each {| key, value | block } -> hsh * hsh.each_pair {| key, value | block } -> hsh * hsh.each -> an_enumerator * hsh.each_pair -> an_enumerator * * Calls block once for each key in hsh, passing the key-value * pair as parameters. * * If no block is given, an enumerator is returned instead. * * h = { "a" => 100, "b" => 200 } * h.each {|key, value| puts "#{key} is #{value}" } * * produces: * * a is 100 * b is 200 * */ static VALUE rb_hash_each_pair(VALUE hash) { RETURN_ENUMERATOR(hash, 0, 0); rb_hash_foreach(hash, each_pair_i, 0); return hash; } static int to_a_i(VALUE key, VALUE value, VALUE ary) { if (key == Qundef) return ST_CONTINUE; rb_ary_push(ary, rb_assoc_new(key, value)); return ST_CONTINUE; } /* * call-seq: * hsh.to_a -> array * * Converts hsh to a nested array of [ key, * value ] arrays. * * h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 } * h.to_a #=> [["c", 300], ["a", 100], ["d", 400]] */ static VALUE rb_hash_to_a(VALUE hash) { VALUE ary; ary = rb_ary_new(); rb_hash_foreach(hash, to_a_i, ary); OBJ_INFECT(ary, hash); return ary; } static int inspect_i(VALUE key, VALUE value, VALUE str) { VALUE str2; if (key == Qundef) return ST_CONTINUE; if (RSTRING_LEN(str) > 1) { rb_str_cat2(str, ", "); } str2 = rb_inspect(key); rb_str_buf_append(str, str2); OBJ_INFECT(str, str2); rb_str_buf_cat2(str, "=>"); str2 = rb_inspect(value); rb_str_buf_append(str, str2); OBJ_INFECT(str, str2); return ST_CONTINUE; } static VALUE inspect_hash(VALUE hash, VALUE dummy, int recur) { VALUE str; if (recur) return rb_usascii_str_new2("{...}"); str = rb_str_buf_new2("{"); rb_hash_foreach(hash, inspect_i, str); rb_str_buf_cat2(str, "}"); OBJ_INFECT(str, hash); return str; } /* * call-seq: * hsh.to_s -> string * hsh.inspect -> string * * Return the contents of this hash as a string. * * h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 } * h.to_s #=> "{\"c\"=>300, \"a\"=>100, \"d\"=>400}" */ static VALUE rb_hash_inspect(VALUE hash) { if (RHASH_EMPTY_P(hash)) return rb_usascii_str_new2("{}"); return rb_exec_recursive(inspect_hash, hash, 0); } /* * call-seq: * hsh.to_hash => hsh * * Returns +self+. */ static VALUE rb_hash_to_hash(VALUE hash) { return hash; } static int keys_i(VALUE key, VALUE value, VALUE ary) { if (key == Qundef) return ST_CONTINUE; rb_ary_push(ary, key); return ST_CONTINUE; } /* * call-seq: * hsh.keys -> array * * Returns a new array populated with the keys from this hash. See also * Hash#values. * * h = { "a" => 100, "b" => 200, "c" => 300, "d" => 400 } * h.keys #=> ["a", "b", "c", "d"] * */ static VALUE rb_hash_keys(VALUE hash) { VALUE ary; ary = rb_ary_new(); rb_hash_foreach(hash, keys_i, ary); return ary; } static int values_i(VALUE key, VALUE value, VALUE ary) { if (key == Qundef) return ST_CONTINUE; rb_ary_push(ary, value); return ST_CONTINUE; } /* * call-seq: * hsh.values -> array * * Returns a new array populated with the values from hsh. See * also Hash#keys. * * h = { "a" => 100, "b" => 200, "c" => 300 } * h.values #=> [100, 200, 300] * */ static VALUE rb_hash_values(VALUE hash) { VALUE ary; ary = rb_ary_new(); rb_hash_foreach(hash, values_i, ary); return ary; } /* * call-seq: * hsh.has_key?(key) -> true or false * hsh.include?(key) -> true or false * hsh.key?(key) -> true or false * hsh.member?(key) -> true or false * * Returns true if the given key is present in hsh. * * h = { "a" => 100, "b" => 200 } * h.has_key?("a") #=> true * h.has_key?("z") #=> false * */ static VALUE rb_hash_has_key(VALUE hash, VALUE key) { if (!RHASH(hash)->ntbl) return Qfalse; if (st_lookup(RHASH(hash)->ntbl, key, 0)) { return Qtrue; } return Qfalse; } static int rb_hash_search_value(VALUE key, VALUE value, VALUE arg) { VALUE *data = (VALUE *)arg; if (key == Qundef) return ST_CONTINUE; if (rb_equal(value, data[1])) { data[0] = Qtrue; return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hsh.has_value?(value) -> true or false * hsh.value?(value) -> true or false * * Returns true if the given value is present for some key * in hsh. * * h = { "a" => 100, "b" => 200 } * h.has_value?(100) #=> true * h.has_value?(999) #=> false */ static VALUE rb_hash_has_value(VALUE hash, VALUE val) { VALUE data[2]; data[0] = Qfalse; data[1] = val; rb_hash_foreach(hash, rb_hash_search_value, (VALUE)data); return data[0]; } struct equal_data { VALUE result; st_table *tbl; int eql; }; static int eql_i(VALUE key, VALUE val1, VALUE arg) { struct equal_data *data = (struct equal_data *)arg; VALUE val2; if (key == Qundef) return ST_CONTINUE; if (!st_lookup(data->tbl, key, &val2)) { data->result = Qfalse; return ST_STOP; } if (!(data->eql ? rb_eql(val1, val2) : (int)rb_equal(val1, val2))) { data->result = Qfalse; return ST_STOP; } return ST_CONTINUE; } static VALUE recursive_eql(VALUE hash, VALUE dt, int recur) { struct equal_data *data; if (recur) return Qtrue; /* Subtle! */ data = (struct equal_data*)dt; data->result = Qtrue; rb_hash_foreach(hash, eql_i, dt); return data->result; } static VALUE hash_equal(VALUE hash1, VALUE hash2, int eql) { struct equal_data data; if (hash1 == hash2) return Qtrue; if (TYPE(hash2) != T_HASH) { if (!rb_respond_to(hash2, rb_intern("to_hash"))) { return Qfalse; } if (eql) return rb_eql(hash2, hash1); else return rb_equal(hash2, hash1); } if (RHASH_SIZE(hash1) != RHASH_SIZE(hash2)) return Qfalse; if (!RHASH(hash1)->ntbl || !RHASH(hash2)->ntbl) return Qtrue; if (RHASH(hash1)->ntbl->type != RHASH(hash2)->ntbl->type) return Qfalse; #if 0 if (!(rb_equal(RHASH_IFNONE(hash1), RHASH_IFNONE(hash2)) && FL_TEST(hash1, HASH_PROC_DEFAULT) == FL_TEST(hash2, HASH_PROC_DEFAULT))) return Qfalse; #endif data.tbl = RHASH(hash2)->ntbl; data.eql = eql; return rb_exec_recursive_paired(recursive_eql, hash1, hash2, (VALUE)&data); } /* * call-seq: * hsh == other_hash -> true or false * * Equality---Two hashes are equal if they each contain the same number * of keys and if each key-value pair is equal to (according to * Object#==) the corresponding elements in the other * hash. * * h1 = { "a" => 1, "c" => 2 } * h2 = { 7 => 35, "c" => 2, "a" => 1 } * h3 = { "a" => 1, "c" => 2, 7 => 35 } * h4 = { "a" => 1, "d" => 2, "f" => 35 } * h1 == h2 #=> false * h2 == h3 #=> true * h3 == h4 #=> false * */ static VALUE rb_hash_equal(VALUE hash1, VALUE hash2) { return hash_equal(hash1, hash2, FALSE); } /* * call-seq: * hash.eql?(other) -> true or false * * Returns true if hash and other are * both hashes with the same content. */ static VALUE rb_hash_eql(VALUE hash1, VALUE hash2) { return hash_equal(hash1, hash2, TRUE); } static int hash_i(VALUE key, VALUE val, VALUE arg) { st_index_t *hval = (st_index_t *)arg; if (key == Qundef) return ST_CONTINUE; *hval ^= rb_hash_end(rb_hash_uint(rb_hash_start(rb_hash(key)), rb_hash(val))); return ST_CONTINUE; } static VALUE recursive_hash(VALUE hash, VALUE dummy, int recur) { st_index_t hval; if (!RHASH(hash)->ntbl) return LONG2FIX(0); hval = RHASH(hash)->ntbl->num_entries; if (recur) hval = rb_hash_end(rb_hash_uint(rb_hash_start(rb_hash(rb_cHash)), hval)); else rb_hash_foreach(hash, hash_i, (VALUE)&hval); return INT2FIX(hval); } /* * call-seq: * hsh.hash -> fixnum * * Compute a hash-code for this hash. Two hashes with the same content * will have the same hash code (and will compare using eql?). */ static VALUE rb_hash_hash(VALUE hash) { return rb_exec_recursive_outer(recursive_hash, hash, 0); } static int rb_hash_invert_i(VALUE key, VALUE value, VALUE hash) { if (key == Qundef) return ST_CONTINUE; rb_hash_aset(hash, value, key); return ST_CONTINUE; } /* * call-seq: * hsh.invert -> new_hash * * Returns a new hash created by using hsh's values as keys, and * the keys as values. * * h = { "n" => 100, "m" => 100, "y" => 300, "d" => 200, "a" => 0 } * h.invert #=> {0=>"a", 100=>"m", 200=>"d", 300=>"y"} * */ static VALUE rb_hash_invert(VALUE hash) { VALUE h = rb_hash_new(); rb_hash_foreach(hash, rb_hash_invert_i, h); return h; } static int rb_hash_update_i(VALUE key, VALUE value, VALUE hash) { if (key == Qundef) return ST_CONTINUE; hash_update(hash, key); st_insert(RHASH(hash)->ntbl, key, value); return ST_CONTINUE; } static int rb_hash_update_block_i(VALUE key, VALUE value, VALUE hash) { if (key == Qundef) return ST_CONTINUE; if (rb_hash_has_key(hash, key)) { value = rb_yield_values(3, key, rb_hash_aref(hash, key), value); } hash_update(hash, key); st_insert(RHASH(hash)->ntbl, key, value); return ST_CONTINUE; } /* * call-seq: * hsh.merge!(other_hash) -> hsh * hsh.update(other_hash) -> hsh * hsh.merge!(other_hash){|key, oldval, newval| block} -> hsh * hsh.update(other_hash){|key, oldval, newval| block} -> hsh * * Adds the contents of other_hash to hsh. If no * block is specified, entries with duplicate keys are overwritten * with the values from other_hash, otherwise the value * of each duplicate key is determined by calling the block with * the key, its value in hsh and its value in other_hash. * * h1 = { "a" => 100, "b" => 200 } * h2 = { "b" => 254, "c" => 300 } * h1.merge!(h2) #=> {"a"=>100, "b"=>254, "c"=>300} * * h1 = { "a" => 100, "b" => 200 } * h2 = { "b" => 254, "c" => 300 } * h1.merge!(h2) { |key, v1, v2| v1 } * #=> {"a"=>100, "b"=>200, "c"=>300} */ static VALUE rb_hash_update(VALUE hash1, VALUE hash2) { rb_hash_modify(hash1); hash2 = to_hash(hash2); if (rb_block_given_p()) { rb_hash_foreach(hash2, rb_hash_update_block_i, hash1); } else { rb_hash_foreach(hash2, rb_hash_update_i, hash1); } return hash1; } /* * call-seq: * hsh.merge(other_hash) -> new_hash * hsh.merge(other_hash){|key, oldval, newval| block} -> new_hash * * Returns a new hash containing the contents of other_hash and * the contents of hsh. If no block is specified, the value for * entries with duplicate keys will be that of other_hash. Otherwise * the value for each duplicate key is determined by calling the block * with the key, its value in hsh and its value in other_hash. * * h1 = { "a" => 100, "b" => 200 } * h2 = { "b" => 254, "c" => 300 } * h1.merge(h2) #=> {"a"=>100, "b"=>254, "c"=>300} * h1.merge(h2){|key, oldval, newval| newval - oldval} * #=> {"a"=>100, "b"=>54, "c"=>300} * h1 #=> {"a"=>100, "b"=>200} * */ static VALUE rb_hash_merge(VALUE hash1, VALUE hash2) { return rb_hash_update(rb_obj_dup(hash1), hash2); } static int assoc_i(VALUE key, VALUE val, VALUE arg) { VALUE *args = (VALUE *)arg; if (key == Qundef) return ST_CONTINUE; if (RTEST(rb_equal(args[0], key))) { args[1] = rb_assoc_new(key, val); return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hash.assoc(obj) -> an_array or nil * * Searches through the hash comparing _obj_ with the key using ==. * Returns the key-value pair (two elements array) or +nil+ * if no match is found. See Array#assoc. * * h = {"colors" => ["red", "blue", "green"], * "letters" => ["a", "b", "c" ]} * h.assoc("letters") #=> ["letters", ["a", "b", "c"]] * h.assoc("foo") #=> nil */ VALUE rb_hash_assoc(VALUE hash, VALUE obj) { VALUE args[2]; args[0] = obj; args[1] = Qnil; rb_hash_foreach(hash, assoc_i, (VALUE)args); return args[1]; } static int rassoc_i(VALUE key, VALUE val, VALUE arg) { VALUE *args = (VALUE *)arg; if (key == Qundef) return ST_CONTINUE; if (RTEST(rb_equal(args[0], val))) { args[1] = rb_assoc_new(key, val); return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hash.rassoc(key) -> an_array or nil * * Searches through the hash comparing _obj_ with the value using ==. * Returns the first key-value pair (two-element array) that matches. See * also Array#rassoc. * * a = {1=> "one", 2 => "two", 3 => "three", "ii" => "two"} * a.rassoc("two") #=> [2, "two"] * a.rassoc("four") #=> nil */ VALUE rb_hash_rassoc(VALUE hash, VALUE obj) { VALUE args[2]; args[0] = obj; args[1] = Qnil; rb_hash_foreach(hash, rassoc_i, (VALUE)args); return args[1]; } /* * call-seq: * hash.flatten -> an_array * hash.flatten(level) -> an_array * * Returns a new array that is a one-dimensional flattening of this * hash. That is, for every key or value that is an array, extract * its elements into the new array. Unlike Array#flatten, this * method does not flatten recursively by default. The optional * level argument determines the level of recursion to flatten. * * a = {1=> "one", 2 => [2,"two"], 3 => "three"} * a.flatten # => [1, "one", 2, [2, "two"], 3, "three"] * a.flatten(2) # => [1, "one", 2, 2, "two", 3, "three"] */ static VALUE rb_hash_flatten(int argc, VALUE *argv, VALUE hash) { VALUE ary, tmp; ary = rb_hash_to_a(hash); if (argc == 0) { argc = 1; tmp = INT2FIX(1); argv = &tmp; } rb_funcall2(ary, rb_intern("flatten!"), argc, argv); return ary; } /* * call-seq: * hsh.compare_by_identity -> hsh * * Makes hsh compare its keys by their identity, i.e. it * will consider exact same objects as same keys. * * h1 = { "a" => 100, "b" => 200, :c => "c" } * h1["a"] #=> 100 * h1.compare_by_identity * h1.compare_by_identity? #=> true * h1["a"] #=> nil # different objects. * h1[:c] #=> "c" # same symbols are all same. * */ static VALUE rb_hash_compare_by_id(VALUE hash) { rb_hash_modify(hash); RHASH(hash)->ntbl->type = &identhash; rb_hash_rehash(hash); return hash; } /* * call-seq: * hsh.compare_by_identity? -> true or false * * Returns true if hsh will compare its keys by * their identity. Also see Hash#compare_by_identity. * */ static VALUE rb_hash_compare_by_id_p(VALUE hash) { if (!RHASH(hash)->ntbl) return Qfalse; if (RHASH(hash)->ntbl->type == &identhash) { return Qtrue; } return Qfalse; } static int path_tainted = -1; static char **origenviron; //RHO #if (!defined(RHO_SYMBIAN) || defined(OS_SYMBIAN)) && !defined(_WIN32) static char * __environ = ""; static char ** environ = &__environ; #endif //RHO #ifdef _WIN32 #define GET_ENVIRON(e) (e = rb_w32_get_environ()) #define FREE_ENVIRON(e) rb_w32_free_environ(e) static char **my_environ; #undef environ #define environ my_environ #elif defined(__APPLE__) #undef environ //#define environ (*_NSGetEnviron()) static char **my_environ; #undef environ #define environ my_environ #define GET_ENVIRON(e) (e) #define FREE_ENVIRON(e) #else extern char **environ; #define GET_ENVIRON(e) (e) #define FREE_ENVIRON(e) #endif #ifdef ENV_IGNORECASE #define ENVMATCH(s1, s2) (STRCASECMP(s1, s2) == 0) #define ENVNMATCH(s1, s2, n) (STRNCASECMP(s1, s2, n) == 0) #else #define ENVMATCH(n1, n2) (strcmp(n1, n2) == 0) #define ENVNMATCH(s1, s2, n) (memcmp(s1, s2, n) == 0) #endif static VALUE env_str_new(const char *ptr, long len) { VALUE str = rb_locale_str_new(ptr, len); rb_obj_freeze(str); return str; } static VALUE env_str_new2(const char *ptr) { if (!ptr) return Qnil; return env_str_new(ptr, strlen(ptr)); } static VALUE env_delete(VALUE obj, VALUE name) { char *nam, *val; rb_secure(4); SafeStringValue(name); nam = RSTRING_PTR(name); if (memchr(nam, '\0', RSTRING_LEN(name))) { rb_raise(rb_eArgError, "bad environment variable name"); } val = getenv(nam); if (val) { VALUE value = env_str_new2(val); ruby_setenv(nam, 0); if (ENVMATCH(nam, PATH_ENV)) { path_tainted = 0; } return value; } return Qnil; } static VALUE env_delete_m(VALUE obj, VALUE name) { VALUE val; val = env_delete(obj, name); if (NIL_P(val) && rb_block_given_p()) rb_yield(name); return val; } static int env_path_tainted(const char *); static VALUE rb_f_getenv(VALUE obj, VALUE name) { char *nam, *env; rb_secure(4); SafeStringValue(name); nam = RSTRING_PTR(name); if (memchr(nam, '\0', RSTRING_LEN(name))) { rb_raise(rb_eArgError, "bad environment variable name"); } env = getenv(nam); if (env) { if (ENVMATCH(nam, PATH_ENV) && !env_path_tainted(env)) { VALUE str = rb_filesystem_str_new_cstr(env); rb_obj_freeze(str); return str; } return env_str_new2(env); } return Qnil; } static VALUE env_fetch(int argc, VALUE *argv) { VALUE key, if_none; long block_given; char *nam, *env; rb_secure(4); rb_scan_args(argc, argv, "11", &key, &if_none); block_given = rb_block_given_p(); if (block_given && argc == 2) { rb_warn("block supersedes default value argument"); } SafeStringValue(key); nam = RSTRING_PTR(key); if (memchr(nam, '\0', RSTRING_LEN(key))) { rb_raise(rb_eArgError, "bad environment variable name"); } env = getenv(nam); if (!env) { if (block_given) return rb_yield(key); if (argc == 1) { rb_raise(rb_eKeyError, "key not found"); } return if_none; } if (ENVMATCH(nam, PATH_ENV) && !env_path_tainted(env)) return rb_filesystem_str_new_cstr(env); return env_str_new2(env); } static void path_tainted_p(const char *path) { path_tainted = rb_path_check(path)?0:1; } static int env_path_tainted(const char *path) { if (path_tainted < 0) { path_tainted_p(path); } return path_tainted; } int rb_env_path_tainted(void) { if (path_tainted < 0) { path_tainted_p(getenv(PATH_ENV)); } return path_tainted; } #if defined(_WIN32) || (defined(HAVE_SETENV) && defined(HAVE_UNSETENV)) #elif defined __sun__ static int in_origenv(const char *str) { char **env; for (env = origenviron; *env; ++env) { if (*env == str) return 1; } return 0; } #else static int envix(const char *nam) { register int i, len = strlen(nam); char **env; env = GET_ENVIRON(environ); for (i = 0; env[i]; i++) { if (ENVNMATCH(env[i],nam,len) && env[i][len] == '=') break; /* memcmp must come first to avoid */ } /* potential SEGV's */ FREE_ENVIRON(environ); return i; } #endif void ruby_setenv(const char *name, const char *value) { #if defined(_WIN32) #if !defined( _WIN32_WCE ) && !defined(OS_WP8) int len; char *buf; int failed = 0; if (strchr(name, '=')) { errno = EINVAL; rb_sys_fail("ruby_setenv"); } if (value) { len = strlen(name) + 1 + strlen(value) + 1; buf = ALLOCA_N(char, len); snprintf(buf, len, "%s=%s", name, value); failed = putenv(buf); /* putenv() doesn't handle empty value */ if (!*value) failed = !SetEnvironmentVariable(name,value); } else { len = strlen(name) + 1 + 1; buf = ALLOCA_N(char, len); snprintf(buf, len, "%s=", name); putenv(buf); failed = !SetEnvironmentVariable(name, 0); } if (failed) { rb_warn("failed to set environment variable. Ruby 1.9.3 will raise SystemCallError in this case."); } #endif #elif defined(HAVE_SETENV) && defined(HAVE_UNSETENV) #undef setenv #undef unsetenv if (value) { if (setenv(name, value, 1)) rb_sys_fail("setenv"); } else { #ifdef VOID_UNSETENV unsetenv(name); #else if (unsetenv(name)) rb_sys_fail("unsetenv"); #endif } #elif defined __sun__ size_t len; char **env_ptr, *str; if (strchr(name, '=')) { errno = EINVAL; rb_sys_fail("ruby_setenv"); } len = strlen(name); for (env_ptr = GET_ENVIRON(environ); (str = *env_ptr) != 0; ++env_ptr) { if (!strncmp(str, name, len) && str[len] == '=') { if (!in_origenv(str)) free(str); while ((env_ptr[0] = env_ptr[1]) != 0) env_ptr++; break; } } if (value) { str = malloc(len += strlen(value) + 2); snprintf(str, len, "%s=%s", name, value); if (putenv(str)) rb_sys_fail("putenv"); } #else /* WIN32 */ size_t len; int i; if (strchr(name, '=')) { errno = EINVAL; rb_sys_fail("ruby_setenv"); } i=envix(name); /* where does it go? */ if (environ == origenviron) { /* need we copy environment? */ int j; int max; char **tmpenv; for (max = i; environ[max]; max++) ; tmpenv = ALLOC_N(char*, max+2); for (j=0; j= 4) { rb_raise(rb_eSecurityError, "can't change environment variable"); } if (NIL_P(val)) { env_delete(obj, nm); return Qnil; } StringValue(nm); StringValue(val); name = RSTRING_PTR(nm); value = RSTRING_PTR(val); if (memchr(name, '\0', RSTRING_LEN(nm))) rb_raise(rb_eArgError, "bad environment variable name"); if (memchr(value, '\0', RSTRING_LEN(val))) rb_raise(rb_eArgError, "bad environment variable value"); ruby_setenv(name, value); if (ENVMATCH(name, PATH_ENV)) { if (OBJ_TAINTED(val)) { /* already tainted, no check */ path_tainted = 1; return val; } else { path_tainted_p(value); } } return val; } static VALUE env_keys(void) { char **env; VALUE ary; rb_secure(4); ary = rb_ary_new(); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s) { rb_ary_push(ary, env_str_new(*env, s-*env)); } env++; } FREE_ENVIRON(environ); return ary; } static VALUE env_each_key(VALUE ehash) { VALUE keys; long i; RETURN_ENUMERATOR(ehash, 0, 0); keys = env_keys(); /* rb_secure(4); */ for (i=0; i"); i = rb_inspect(rb_str_new2(s+1)); rb_str_buf_append(str, i); } env++; } FREE_ENVIRON(environ); rb_str_buf_cat2(str, "}"); OBJ_TAINT(str); return str; } static VALUE env_to_a(void) { char **env; VALUE ary; rb_secure(4); ary = rb_ary_new(); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s) { rb_ary_push(ary, rb_assoc_new(env_str_new(*env, s-*env), env_str_new2(s+1))); } env++; } FREE_ENVIRON(environ); return ary; } static VALUE env_none(void) { return Qnil; } static VALUE env_size(void) { int i; char **env; rb_secure(4); env = GET_ENVIRON(environ); for(i=0; env[i]; i++) ; FREE_ENVIRON(environ); return INT2FIX(i); } static VALUE env_empty_p(void) { char **env; rb_secure(4); env = GET_ENVIRON(environ); if (env[0] == 0) { FREE_ENVIRON(environ); return Qtrue; } FREE_ENVIRON(environ); return Qfalse; } static VALUE env_has_key(VALUE env, VALUE key) { char *s; rb_secure(4); s = StringValuePtr(key); if (memchr(s, '\0', RSTRING_LEN(key))) rb_raise(rb_eArgError, "bad environment variable name"); if (getenv(s)) return Qtrue; return Qfalse; } static VALUE env_assoc(VALUE env, VALUE key) { char *s, *e; rb_secure(4); s = StringValuePtr(key); if (memchr(s, '\0', RSTRING_LEN(key))) rb_raise(rb_eArgError, "bad environment variable name"); e = getenv(s); if (e) return rb_assoc_new(key, rb_tainted_str_new2(e)); return Qnil; } static VALUE env_has_value(VALUE dmy, VALUE obj) { char **env; rb_secure(4); obj = rb_check_string_type(obj); if (NIL_P(obj)) return Qnil; env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s++) { long len = strlen(s); if (RSTRING_LEN(obj) == len && strncmp(s, RSTRING_PTR(obj), len) == 0) { FREE_ENVIRON(environ); return Qtrue; } } env++; } FREE_ENVIRON(environ); return Qfalse; } static VALUE env_rassoc(VALUE dmy, VALUE obj) { char **env; rb_secure(4); obj = rb_check_string_type(obj); if (NIL_P(obj)) return Qnil; env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s++) { long len = strlen(s); if (RSTRING_LEN(obj) == len && strncmp(s, RSTRING_PTR(obj), len) == 0) { VALUE result = rb_assoc_new(rb_tainted_str_new(*env, s-*env-1), obj); FREE_ENVIRON(environ); return result; } } env++; } FREE_ENVIRON(environ); return Qnil; } static VALUE env_key(VALUE dmy, VALUE value) { char **env; VALUE str; rb_secure(4); StringValue(value); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s++) { long len = strlen(s); if (RSTRING_LEN(value) == len && strncmp(s, RSTRING_PTR(value), len) == 0) { str = env_str_new(*env, s-*env-1); FREE_ENVIRON(environ); return str; } } env++; } FREE_ENVIRON(environ); return Qnil; } static VALUE env_index(VALUE dmy, VALUE value) { rb_warn("ENV.index is deprecated; use ENV.key"); return env_key(dmy, value); } static VALUE env_to_hash(void) { char **env; VALUE hash; rb_secure(4); hash = rb_hash_new(); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s) { rb_hash_aset(hash, env_str_new(*env, s-*env), env_str_new2(s+1)); } env++; } FREE_ENVIRON(environ); return hash; } static VALUE env_reject(void) { return rb_hash_delete_if(env_to_hash()); } static VALUE env_shift(void) { char **env; rb_secure(4); env = GET_ENVIRON(environ); if (*env) { char *s = strchr(*env, '='); if (s) { VALUE key = env_str_new(*env, s-*env); VALUE val = env_str_new2(getenv(RSTRING_PTR(key))); env_delete(Qnil, key); return rb_assoc_new(key, val); } } FREE_ENVIRON(environ); return Qnil; } static VALUE env_invert(void) { return rb_hash_invert(env_to_hash()); } static int env_replace_i(VALUE key, VALUE val, VALUE keys) { if (key != Qundef) { env_aset(Qnil, key, val); if (rb_ary_includes(keys, key)) { rb_ary_delete(keys, key); } } return ST_CONTINUE; } static VALUE env_replace(VALUE env, VALUE hash) { volatile VALUE keys; long i; keys = env_keys(); /* rb_secure(4); */ if (env == hash) return env; hash = to_hash(hash); rb_hash_foreach(hash, env_replace_i, keys); for (i=0; iHash is a collection of key-value pairs. It is * similar to an Array, except that indexing is done via * arbitrary keys of any object type, not an integer index. Hashes enumerate * their values in the order that the corresponding keys were inserted. * * Hashes have a default value that is returned when accessing * keys that do not exist in the hash. By default, that value is * nil. * */ void Init_Hash(void) { #undef rb_intern #define rb_intern(str) rb_intern_const(str) id_hash = rb_intern("hash"); id_yield = rb_intern("yield"); id_default = rb_intern("default"); rb_cHash = rb_define_class("Hash", rb_cObject); rb_include_module(rb_cHash, rb_mEnumerable); rb_define_alloc_func(rb_cHash, hash_alloc); rb_define_singleton_method(rb_cHash, "[]", rb_hash_s_create, -1); rb_define_singleton_method(rb_cHash, "try_convert", rb_hash_s_try_convert, 1); rb_define_method(rb_cHash,"initialize", rb_hash_initialize, -1); rb_define_method(rb_cHash,"initialize_copy", rb_hash_replace, 1); rb_define_method(rb_cHash,"rehash", rb_hash_rehash, 0); rb_define_method(rb_cHash,"to_hash", rb_hash_to_hash, 0); rb_define_method(rb_cHash,"to_a", rb_hash_to_a, 0); rb_define_method(rb_cHash,"inspect", rb_hash_inspect, 0); rb_define_alias(rb_cHash, "to_s", "inspect"); rb_define_method(rb_cHash,"==", rb_hash_equal, 1); rb_define_method(rb_cHash,"[]", rb_hash_aref, 1); rb_define_method(rb_cHash,"hash", rb_hash_hash, 0); rb_define_method(rb_cHash,"eql?", rb_hash_eql, 1); rb_define_method(rb_cHash,"fetch", rb_hash_fetch_m, -1); rb_define_method(rb_cHash,"[]=", rb_hash_aset, 2); rb_define_method(rb_cHash,"store", rb_hash_aset, 2); rb_define_method(rb_cHash,"default", rb_hash_default, -1); rb_define_method(rb_cHash,"default=", rb_hash_set_default, 1); rb_define_method(rb_cHash,"default_proc", rb_hash_default_proc, 0); rb_define_method(rb_cHash,"default_proc=", rb_hash_set_default_proc, 1); rb_define_method(rb_cHash,"key", rb_hash_key, 1); rb_define_method(rb_cHash,"index", rb_hash_index, 1); rb_define_method(rb_cHash,"size", rb_hash_size, 0); rb_define_method(rb_cHash,"length", rb_hash_size, 0); rb_define_method(rb_cHash,"empty?", rb_hash_empty_p, 0); rb_define_method(rb_cHash,"each_value", rb_hash_each_value, 0); rb_define_method(rb_cHash,"each_key", rb_hash_each_key, 0); rb_define_method(rb_cHash,"each_pair", rb_hash_each_pair, 0); rb_define_method(rb_cHash,"each", rb_hash_each_pair, 0); rb_define_method(rb_cHash,"keys", rb_hash_keys, 0); rb_define_method(rb_cHash,"values", rb_hash_values, 0); rb_define_method(rb_cHash,"values_at", rb_hash_values_at, -1); rb_define_method(rb_cHash,"shift", rb_hash_shift, 0); rb_define_method(rb_cHash,"delete", rb_hash_delete, 1); rb_define_method(rb_cHash,"delete_if", rb_hash_delete_if, 0); rb_define_method(rb_cHash,"keep_if", rb_hash_keep_if, 0); rb_define_method(rb_cHash,"select", rb_hash_select, 0); rb_define_method(rb_cHash,"select!", rb_hash_select_bang, 0); rb_define_method(rb_cHash,"reject", rb_hash_reject, 0); rb_define_method(rb_cHash,"reject!", rb_hash_reject_bang, 0); rb_define_method(rb_cHash,"clear", rb_hash_clear, 0); rb_define_method(rb_cHash,"invert", rb_hash_invert, 0); rb_define_method(rb_cHash,"update", rb_hash_update, 1); rb_define_method(rb_cHash,"replace", rb_hash_replace, 1); rb_define_method(rb_cHash,"merge!", rb_hash_update, 1); rb_define_method(rb_cHash,"merge", rb_hash_merge, 1); rb_define_method(rb_cHash, "assoc", rb_hash_assoc, 1); rb_define_method(rb_cHash, "rassoc", rb_hash_rassoc, 1); rb_define_method(rb_cHash, "flatten", rb_hash_flatten, -1); rb_define_method(rb_cHash,"include?", rb_hash_has_key, 1); rb_define_method(rb_cHash,"member?", rb_hash_has_key, 1); rb_define_method(rb_cHash,"has_key?", rb_hash_has_key, 1); rb_define_method(rb_cHash,"has_value?", rb_hash_has_value, 1); rb_define_method(rb_cHash,"key?", rb_hash_has_key, 1); rb_define_method(rb_cHash,"value?", rb_hash_has_value, 1); rb_define_method(rb_cHash,"compare_by_identity", rb_hash_compare_by_id, 0); rb_define_method(rb_cHash,"compare_by_identity?", rb_hash_compare_by_id_p, 0); origenviron = environ; envtbl = rb_obj_alloc(rb_cObject); rb_extend_object(envtbl, rb_mEnumerable); rb_define_singleton_method(envtbl,"[]", rb_f_getenv, 1); rb_define_singleton_method(envtbl,"fetch", env_fetch, -1); rb_define_singleton_method(envtbl,"[]=", env_aset, 2); rb_define_singleton_method(envtbl,"store", env_aset, 2); rb_define_singleton_method(envtbl,"each", env_each_pair, 0); rb_define_singleton_method(envtbl,"each_pair", env_each_pair, 0); rb_define_singleton_method(envtbl,"each_key", env_each_key, 0); rb_define_singleton_method(envtbl,"each_value", env_each_value, 0); rb_define_singleton_method(envtbl,"delete", env_delete_m, 1); rb_define_singleton_method(envtbl,"delete_if", env_delete_if, 0); rb_define_singleton_method(envtbl,"keep_if", env_keep_if, 0); rb_define_singleton_method(envtbl,"clear", rb_env_clear, 0); rb_define_singleton_method(envtbl,"reject", env_reject, 0); rb_define_singleton_method(envtbl,"reject!", env_reject_bang, 0); rb_define_singleton_method(envtbl,"select", env_select, 0); rb_define_singleton_method(envtbl,"select!", env_select_bang, 0); rb_define_singleton_method(envtbl,"shift", env_shift, 0); rb_define_singleton_method(envtbl,"invert", env_invert, 0); rb_define_singleton_method(envtbl,"replace", env_replace, 1); rb_define_singleton_method(envtbl,"update", env_update, 1); rb_define_singleton_method(envtbl,"inspect", env_inspect, 0); rb_define_singleton_method(envtbl,"rehash", env_none, 0); rb_define_singleton_method(envtbl,"to_a", env_to_a, 0); rb_define_singleton_method(envtbl,"to_s", env_to_s, 0); rb_define_singleton_method(envtbl,"key", env_key, 1); rb_define_singleton_method(envtbl,"index", env_index, 1); rb_define_singleton_method(envtbl,"size", env_size, 0); rb_define_singleton_method(envtbl,"length", env_size, 0); rb_define_singleton_method(envtbl,"empty?", env_empty_p, 0); rb_define_singleton_method(envtbl,"keys", env_keys, 0); rb_define_singleton_method(envtbl,"values", env_values, 0); rb_define_singleton_method(envtbl,"values_at", env_values_at, -1); rb_define_singleton_method(envtbl,"include?", env_has_key, 1); rb_define_singleton_method(envtbl,"member?", env_has_key, 1); rb_define_singleton_method(envtbl,"has_key?", env_has_key, 1); rb_define_singleton_method(envtbl,"has_value?", env_has_value, 1); rb_define_singleton_method(envtbl,"key?", env_has_key, 1); rb_define_singleton_method(envtbl,"value?", env_has_value, 1); rb_define_singleton_method(envtbl,"to_hash", env_to_hash, 0); rb_define_singleton_method(envtbl,"assoc", env_assoc, 1); rb_define_singleton_method(envtbl,"rassoc", env_rassoc, 1); rb_define_global_const("ENV", envtbl); }