// Copyright (C) 2006 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_MATRIx_DATA_LAYOUT_ #define DLIB_MATRIx_DATA_LAYOUT_ #include "../algs.h" #include "matrix_fwd.h" #include "matrix_data_layout_abstract.h" // GCC 4.8 gives false alarms about some matrix operations going out of bounds. Disable // these false warnings. #if ( defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 8) #pragma GCC diagnostic ignored "-Warray-bounds" #endif namespace dlib { // ---------------------------------------------------------------------------------------- /*! A matrix layout object is any object that contains a templated class called "layout" with an interface identical to one below: (Note that all the template arguments are just the template arguments from the dlib::matrix object and the member functions are defined identically to the ones with the same signatures inside the matrix object.) struct matrix_layout { template < typename T, long num_rows, long num_cols, typename mem_manager > class layout { public: T& operator() ( long r, long c ); const T& operator() ( long r, long c ); T& operator() ( long i ); const T& operator() ( long i ) const; void swap( layout& item ); long nr ( ) const; long nc ( ) const; void set_size ( long nr_, long nc_ ); }; }; !*/ // ---------------------------------------------------------------------------------------- struct row_major_layout { // if a matrix is bigger than this many bytes then don't put it on the stack const static size_t max_stack_based_size = 256; // this is a hack to avoid a compile time error in visual studio 8. I would just // use sizeof(T) and be done with it but that won't compile. The idea here // is to avoid using the stack allocation of the layout object if it // is going to contain another matrix and also avoid asking for the sizeof() // the contained matrix. template struct get_sizeof_helper { const static std::size_t val = sizeof(T); }; template struct get_sizeof_helper > { const static std::size_t val = 1000000; }; template < typename T, long num_rows, long num_cols, typename mem_manager, int val = static_switch < // when the sizes are all non zero and small (num_rows*num_cols*get_sizeof_helper::val <= max_stack_based_size) && (num_rows != 0 && num_cols != 0), // when the sizes are all non zero and big (num_rows*num_cols*get_sizeof_helper::val > max_stack_based_size) && (num_rows != 0 && num_cols != 0), num_rows == 0 && num_cols != 0, num_rows != 0 && num_cols == 0, num_rows == 0 && num_cols == 0 >::value > class layout ; /*! WHAT THIS OBJECT REPRESENTS This object represents the actual allocation of space for a matrix. Small matrices allocate all their data on the stack and bigger ones use a memory_manager to get their memory. !*/ // ------------------------------------------------------------------------------------ template < typename T, long num_rows, long num_cols, typename mem_manager > class layout : noncopyable // when the sizes are all non zero and small { public: const static long NR = num_rows; const static long NC = num_cols; layout() {} T& operator() ( long r, long c ) { return *(data+r*num_cols + c); } const T& operator() ( long r, long c ) const { return *(data+r*num_cols + c); } T& operator() ( long i ) { return data[i]; } const T& operator() ( long i ) const { return data[i]; } void swap( layout& item ) { for (long r = 0; r < num_rows; ++r) { for (long c = 0; c < num_cols; ++c) { exchange((*this)(r,c),item(r,c)); } } } long nr ( ) const { return num_rows; } long nc ( ) const { return num_cols; } void set_size ( long , long ) { } private: T data[num_rows*num_cols]; }; // ------------------------------------------------------------------------------------ template < typename T, long num_rows, long num_cols, typename mem_manager > class layout : noncopyable // when the sizes are all non zero and big { public: const static long NR = num_rows; const static long NC = num_cols; layout ( ) { data = pool.allocate_array(num_rows*num_cols); } ~layout () { pool.deallocate_array(data); } T& operator() ( long r, long c ) { return data[r*num_cols + c]; } const T& operator() ( long r, long c ) const { return data[r*num_cols + c]; } T& operator() ( long i ) { return data[i]; } const T& operator() ( long i ) const { return data[i]; } void swap( layout& item ) { std::swap(item.data,data); pool.swap(item.pool); } long nr ( ) const { return num_rows; } long nc ( ) const { return num_cols; } void set_size ( long , long ) { } private: T* data; typename mem_manager::template rebind::other pool; }; // ------------------------------------------------------------------------------------ template < typename T, long num_rows, long num_cols, typename mem_manager > class layout : noncopyable // when num_rows == 0 && num_cols != 0, { public: const static long NR = num_rows; const static long NC = num_cols; layout ( ):data(0), nr_(0) { } ~layout () { if (data) pool.deallocate_array(data); } T& operator() ( long r, long c ) { return data[r*num_cols + c]; } const T& operator() ( long r, long c ) const { return data[r*num_cols + c]; } T& operator() ( long i ) { return data[i]; } const T& operator() ( long i ) const { return data[i]; } void swap( layout& item ) { std::swap(item.data,data); std::swap(item.nr_,nr_); pool.swap(item.pool); } long nr ( ) const { return nr_; } long nc ( ) const { return num_cols; } void set_size ( long nr, long nc ) { if (data) { pool.deallocate_array(data); } data = pool.allocate_array(nr*nc); nr_ = nr; } private: T* data; long nr_; typename mem_manager::template rebind::other pool; }; // ------------------------------------------------------------------------------------ template < typename T, long num_rows, long num_cols, typename mem_manager > class layout : noncopyable // when num_rows != 0 && num_cols == 0 { public: const static long NR = num_rows; const static long NC = num_cols; layout ( ):data(0), nc_(0) { } ~layout () { if (data) { pool.deallocate_array(data); } } T& operator() ( long r, long c ) { return data[r*nc_ + c]; } const T& operator() ( long r, long c ) const { return data[r*nc_ + c]; } T& operator() ( long i ) { return data[i]; } const T& operator() ( long i ) const { return data[i]; } void swap( layout& item ) { std::swap(item.data,data); std::swap(item.nc_,nc_); pool.swap(item.pool); } long nr ( ) const { return num_rows; } long nc ( ) const { return nc_; } void set_size ( long nr, long nc ) { if (data) { pool.deallocate_array(data); } data = pool.allocate_array(nr*nc); nc_ = nc; } private: T* data; long nc_; typename mem_manager::template rebind::other pool; }; // ------------------------------------------------------------------------------------ template < typename T, long num_rows, long num_cols, typename mem_manager > class layout : noncopyable // when num_rows == 0 && num_cols == 0 { public: const static long NR = num_rows; const static long NC = num_cols; layout ( ):data(0), nr_(0), nc_(0) { } ~layout () { if (data) { pool.deallocate_array(data); } } T& operator() ( long r, long c ) { return data[r*nc_ + c]; } const T& operator() ( long r, long c ) const { return data[r*nc_ + c]; } T& operator() ( long i ) { return data[i]; } const T& operator() ( long i ) const { return data[i]; } void swap( layout& item ) { std::swap(item.data,data); std::swap(item.nc_,nc_); std::swap(item.nr_,nr_); pool.swap(item.pool); } long nr ( ) const { return nr_; } long nc ( ) const { return nc_; } void set_size ( long nr, long nc ) { if (data) { pool.deallocate_array(data); } data = pool.allocate_array(nr*nc); nr_ = nr; nc_ = nc; } private: T* data; long nr_; long nc_; typename mem_manager::template rebind::other pool; }; }; // ---------------------------------------------------------------------------------------- struct column_major_layout { // if a matrix is bigger than this many bytes then don't put it on the stack const static size_t max_stack_based_size = 256; // this is a hack to avoid a compile time error in visual studio 8. I would just // use sizeof(T) and be done with it but that won't compile. The idea here // is to avoid using the stack allocation of the layout object if it // is going to contain another matrix and also avoid asking for the sizeof() // the contained matrix. template struct get_sizeof_helper { const static std::size_t val = sizeof(T); }; template struct get_sizeof_helper > { const static std::size_t val = 1000000; }; template < typename T, long num_rows, long num_cols, typename mem_manager, int val = static_switch < // when the sizes are all non zero and small (num_rows*num_cols*get_sizeof_helper::val <= max_stack_based_size) && (num_rows != 0 && num_cols != 0), // when the sizes are all non zero and big (num_rows*num_cols*get_sizeof_helper::val > max_stack_based_size) && (num_rows != 0 && num_cols != 0), num_rows == 0 && num_cols != 0, num_rows != 0 && num_cols == 0, num_rows == 0 && num_cols == 0 >::value > class layout ; /*! WHAT THIS OBJECT REPRESENTS This object represents the actual allocation of space for a matrix. Small matrices allocate all their data on the stack and bigger ones use a memory_manager to get their memory. !*/ // ------------------------------------------------------------------------------------ template < typename T, long num_rows, long num_cols, typename mem_manager > class layout : noncopyable // when the sizes are all non zero and small { public: const static long NR = num_rows; const static long NC = num_cols; layout() {} T& operator() ( long r, long c ) { return *(data+c*num_rows + r); } const T& operator() ( long r, long c ) const { return *(data+c*num_rows + r); } T& operator() ( long i ) { return data[i]; } const T& operator() ( long i ) const { return data[i]; } void swap( layout& item ) { for (long r = 0; r < num_rows; ++r) { for (long c = 0; c < num_cols; ++c) { exchange((*this)(r,c),item(r,c)); } } } long nr ( ) const { return num_rows; } long nc ( ) const { return num_cols; } void set_size ( long, long ) { } private: T data[num_cols*num_rows]; }; // ------------------------------------------------------------------------------------ template < typename T, long num_rows, long num_cols, typename mem_manager > class layout : noncopyable // when the sizes are all non zero and big { public: const static long NR = num_rows; const static long NC = num_cols; layout ( ) { data = pool.allocate_array(num_rows*num_cols); } ~layout () { pool.deallocate_array(data); } T& operator() ( long r, long c ) { return data[c*num_rows + r]; } const T& operator() ( long r, long c ) const { return data[c*num_rows + r]; } T& operator() ( long i ) { return data[i]; } const T& operator() ( long i ) const { return data[i]; } void swap( layout& item ) { std::swap(item.data,data); pool.swap(item.pool); } long nr ( ) const { return num_rows; } long nc ( ) const { return num_cols; } void set_size ( long , long ) { } private: T* data; typename mem_manager::template rebind::other pool; }; // ------------------------------------------------------------------------------------ template < typename T, long num_rows, long num_cols, typename mem_manager > class layout : noncopyable // when num_rows == 0 && num_cols != 0, { public: const static long NR = num_rows; const static long NC = num_cols; layout ( ):data(0), nr_(0) { } ~layout () { if (data) pool.deallocate_array(data); } T& operator() ( long r, long c ) { return data[c*nr_ + r]; } const T& operator() ( long r, long c ) const { return data[c*nr_ + r]; } T& operator() ( long i ) { return data[i]; } const T& operator() ( long i ) const { return data[i]; } void swap( layout& item ) { std::swap(item.data,data); std::swap(item.nr_,nr_); pool.swap(item.pool); } long nr ( ) const { return nr_; } long nc ( ) const { return num_cols; } void set_size ( long nr, long nc ) { if (data) { pool.deallocate_array(data); } data = pool.allocate_array(nr*nc); nr_ = nr; } private: T* data; long nr_; typename mem_manager::template rebind::other pool; }; // ------------------------------------------------------------------------------------ template < typename T, long num_rows, long num_cols, typename mem_manager > class layout : noncopyable // when num_rows != 0 && num_cols == 0 { public: const static long NR = num_rows; const static long NC = num_cols; layout ( ):data(0), nc_(0) { } ~layout () { if (data) { pool.deallocate_array(data); } } T& operator() ( long r, long c ) { return data[c*num_rows + r]; } const T& operator() ( long r, long c ) const { return data[c*num_rows + r]; } T& operator() ( long i ) { return data[i]; } const T& operator() ( long i ) const { return data[i]; } void swap( layout& item ) { std::swap(item.data,data); std::swap(item.nc_,nc_); pool.swap(item.pool); } long nr ( ) const { return num_rows; } long nc ( ) const { return nc_; } void set_size ( long nr, long nc ) { if (data) { pool.deallocate_array(data); } data = pool.allocate_array(nr*nc); nc_ = nc; } private: T* data; long nc_; typename mem_manager::template rebind::other pool; }; // ------------------------------------------------------------------------------------ template < typename T, long num_rows, long num_cols, typename mem_manager > class layout : noncopyable // when num_rows == 0 && num_cols == 0 { public: const static long NR = num_rows; const static long NC = num_cols; layout ( ):data(0), nr_(0), nc_(0) { } ~layout () { if (data) { pool.deallocate_array(data); } } T& operator() ( long r, long c ) { return data[c*nr_ + r]; } const T& operator() ( long r, long c ) const { return data[c*nr_ + r]; } T& operator() ( long i ) { return data[i]; } const T& operator() ( long i ) const { return data[i]; } void swap( layout& item ) { std::swap(item.data,data); std::swap(item.nc_,nc_); std::swap(item.nr_,nr_); pool.swap(item.pool); } long nr ( ) const { return nr_; } long nc ( ) const { return nc_; } void set_size ( long nr, long nc ) { if (data) { pool.deallocate_array(data); } data = pool.allocate_array(nr*nc); nr_ = nr; nc_ = nc; } private: T* data; long nr_; long nc_; typename mem_manager::template rebind::other pool; }; }; // ---------------------------------------------------------------------------------------- } #endif // DLIB_MATRIx_DATA_LAYOUT_