/* $Id: rmimage.c,v 1.277 2008/01/08 23:47:33 rmagick Exp $ */ /*============================================================================\ | Copyright (C) 2008 by Timothy P. Hunter | Name: rmimage.c | Author: Tim Hunter | Purpose: Image class method definitions for RMagick \============================================================================*/ #include "rmagick.h" #include "magick/xwindow.h" // XImageInfo typedef Image *(effector_t)(const Image *, const double, const double, ExceptionInfo *); typedef Image *(flipper_t)(const Image *, ExceptionInfo *); typedef Image *(magnifier_t)(const Image *, ExceptionInfo *); typedef Image *(reader_t)(const Info *, ExceptionInfo *); typedef Image *(scaler_t)(const Image *, const unsigned long, const unsigned long, ExceptionInfo *); typedef MagickBooleanType (thresholder_t)(Image *, const char *); typedef Image *(xformer_t)(const Image *, const RectangleInfo *, ExceptionInfo *); static VALUE cropper(int, int, VALUE *, VALUE); static VALUE effect_image(VALUE, int, VALUE *, effector_t); static VALUE flipflop(int, VALUE, flipper_t); static VALUE rd_image(VALUE, VALUE, reader_t); static VALUE rotate(int, int, VALUE *, VALUE); static VALUE scale(int, int, VALUE *, VALUE, scaler_t); static VALUE threshold_image(int, VALUE *, VALUE, thresholder_t); static VALUE xform_image(int, VALUE, VALUE, VALUE, VALUE, VALUE, xformer_t); static VALUE array_from_images(Image *); static void call_trace_proc(Image *, char *); static const char *BlackPointCompensationKey = "PROFILE:black-point-compensation"; /* Static: adaptive_method Purpose: call Adaptive(Blur|Sharpen)Image */ static VALUE adaptive_method( int argc, VALUE *argv, VALUE self, Image *fp(const Image *, const double, const double, ExceptionInfo *)) { Image *image, *new_image; double radius = 0.0; double sigma = 1.0; ExceptionInfo exception; image = rm_check_destroyed(self); switch (argc) { case 2: sigma = NUM2DBL(argv[1]); case 1: radius = NUM2DBL(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 to 2)", argc); break; } GetExceptionInfo(&exception); new_image = (fp)(image, radius, sigma, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Static: adaptive_channel_method Purpose: call Adaptive(Blur|Sharpen)ImageChannel */ static VALUE adaptive_channel_method( int argc, VALUE *argv, VALUE self, Image *fp(const Image *, const ChannelType, const double, const double, ExceptionInfo *)) { Image *image, *new_image; double radius = 0.0; double sigma = 1.0; ExceptionInfo exception; ChannelType channels; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); switch (argc) { case 2: sigma = NUM2DBL(argv[1]); case 1: radius = NUM2DBL(argv[0]); case 0: break; default: raise_ChannelType_error(argv[argc-1]); break; } GetExceptionInfo(&exception); new_image = (fp)(image, channels, radius, sigma, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#adaptive_blur(radius=0.0, sigma=1.0) Purpose: call AdaptiveBlurImage */ VALUE Image_adaptive_blur(int argc, VALUE *argv, VALUE self) { return adaptive_method(argc, argv, self, AdaptiveBlurImage); } /* Method: Image#adaptive_blur_channel(radius=0.0, sigma=1.0[ , channel...]) Purpose: call AdaptiveBlurImageChannel */ VALUE Image_adaptive_blur_channel(int argc, VALUE *argv, VALUE self) { return adaptive_channel_method(argc, argv, self, AdaptiveBlurImageChannel); } /* Method: Image#adaptive_resize(scale) Image#adaptive_resize(cols, rows) Purpose: Call AdaptiveResizeImage */ VALUE Image_adaptive_resize(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; unsigned long rows, columns; double scale, drows, dcols; ExceptionInfo exception; image = rm_check_destroyed(self); switch (argc) { case 2: rows = NUM2ULONG(argv[1]); columns = NUM2ULONG(argv[0]); break; case 1: scale = NUM2DBL(argv[0]); if (scale < 0.0) { rb_raise(rb_eArgError, "invalid scale value (%g given)", scale); } drows = scale * image->rows + 0.5; dcols = scale * image->columns + 0.5; if (drows > (double)ULONG_MAX || dcols > (double)ULONG_MAX) { rb_raise(rb_eRangeError, "resized image too big"); } rows = (unsigned long) drows; columns = (unsigned long) dcols; break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 1 or 2)", argc); break; } GetExceptionInfo(&exception); new_image = AdaptiveResizeImage(image, columns, rows, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#adaptive_sharpen(radius=0.0, sigma=1.0) Purpose: call AdaptiveSharpenImage */ VALUE Image_adaptive_sharpen(int argc, VALUE *argv, VALUE self) { return adaptive_method(argc, argv, self, AdaptiveSharpenImage); } /* Method: Image#adaptive_sharpen_channel(radius=0.0, sigma=1.0[, channel...]) Purpose: Call AdaptiveSharpenImageChannel */ VALUE Image_adaptive_sharpen_channel(int argc, VALUE *argv, VALUE self) { return adaptive_channel_method(argc, argv, self, AdaptiveSharpenImageChannel); } /* Method: Image#adaptive_threshold(width=3, height=3, offset=0) Purpose: selects an individual threshold for each pixel based on the range of intensity values in its local neighborhood. This allows for thresholding of an image whose global intensity histogram doesn't contain distinctive peaks. Returns: a new image */ VALUE Image_adaptive_threshold(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; unsigned long width = 3, height = 3; long offset = 0; ExceptionInfo exception; image = rm_check_destroyed(self); switch (argc) { case 3: offset = NUM2LONG(argv[2]); case 2: height = NUM2ULONG(argv[1]); case 1: width = NUM2ULONG(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 to 3)", argc); } GetExceptionInfo(&exception); new_image = AdaptiveThresholdImage(image, width, height, offset, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#add_noise(noise_type) Purpose: add random noise to a copy of the image Returns: a new image */ VALUE Image_add_noise(VALUE self, VALUE noise) { Image *image, *new_image; NoiseType noise_type; ExceptionInfo exception; image = rm_check_destroyed(self); VALUE_TO_ENUM(noise, noise_type, NoiseType); GetExceptionInfo(&exception); new_image = AddNoiseImage(image, noise_type, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#add_noise_channel(noise_type[,channel...]) Purpose: add random noise to a copy of the image Returns: a new image */ VALUE Image_add_noise_channel(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; NoiseType noise_type; ExceptionInfo exception; ChannelType channels; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); // There must be 1 remaining argument. if (argc == 0) { rb_raise(rb_eArgError, "missing noise type argument"); } else if (argc > 1) { raise_ChannelType_error(argv[argc-1]); } VALUE_TO_ENUM(argv[0], noise_type, NoiseType); channels &= ~OpacityChannel; GetExceptionInfo(&exception); new_image = AddNoiseImageChannel(image, channels, noise_type, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#add_profile(name) Purpose: adds all the profiles in the specified file Notes: `name' is the profile filename */ VALUE Image_add_profile(VALUE self, VALUE name) { // ImageMagick code based on the code for the "-profile" option in mogrify.c Image *image, *profile_image; ImageInfo *info; ExceptionInfo exception; char *profile_name; char *profile_filename = NULL; long profile_filename_l = 0; const StringInfo *profile; image = rm_check_frozen(self); // ProfileImage issues a warning if something goes wrong. profile_filename = rm_str2cstr(name, &profile_filename_l); info = CloneImageInfo(NULL); if (!info) { rb_raise(rb_eNoMemError, "not enough memory to continue"); } info->client_data= (void *)GetImageProfile(image,"8bim"); strncpy(info->filename, profile_filename, min((size_t)profile_filename_l, sizeof(info->filename))); info->filename[MaxTextExtent-1] = '\0'; GetExceptionInfo(&exception); profile_image = ReadImage(info, &exception); (void) DestroyImageInfo(info); rm_check_exception(&exception, profile_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(profile_image); ResetImageProfileIterator(profile_image); profile_name = GetNextImageProfile(profile_image); while (profile_name) { profile = GetImageProfile(profile_image, profile_name); if (profile) { (void)ProfileImage(image, profile_name, profile->datum, (unsigned long)profile->length, MagickFalse); if (image->exception.severity >= ErrorException) { break; } } profile_name = GetNextImageProfile(profile_image); } (void) DestroyImage(profile_image); rm_check_image_exception(image, RetainOnError); return self; } /* Method: Image#alpha=(alpha) Purpose: Equivalent to -alpha option Notes: see mogrify.c */ VALUE Image_alpha_eq(VALUE self, VALUE type) { #if defined(HAVE_TYPE_ALPHACHANNELTYPE) Image *image; AlphaChannelType alpha; image = rm_check_frozen(self); VALUE_TO_ENUM(type, alpha, AlphaChannelType); #if defined(HAVE_SETIMAGEALPHACHANNEL) // Added in 6.3.6-9 (void) SetImageAlphaChannel(image, alpha); rm_check_image_exception(image, RetainOnError); #else switch (alpha) { case ActivateAlphaChannel: image->matte = MagickTrue; break; case DeactivateAlphaChannel: image->matte = MagickFalse; break; case ResetAlphaChannel: if (image->matte == MagickFalse) { (void) SetImageOpacity(image, OpaqueOpacity); rm_check_image_exception(image, RetainOnError); } break; case SetAlphaChannel: (void) CompositeImage(image, CopyOpacityCompositeOp, image, 0, 0); rm_check_image_exception(image, RetainOnError); break; default: break; } #endif return type; #else self = self; type = type; rm_not_implemented(); return(VALUE)0; #endif } /* Method: Image#affine_transform(affine_matrix) Purpose: transforms an image as dictated by the affine matrix argument Returns: a new image */ VALUE Image_affine_transform(VALUE self, VALUE affine) { Image *image, *new_image; ExceptionInfo exception; AffineMatrix matrix; image = rm_check_destroyed(self); // Convert Magick::AffineMatrix to AffineMatrix structure. AffineMatrix_to_AffineMatrix(&matrix, affine); GetExceptionInfo(&exception); new_image = AffineTransformImage(image, &matrix, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#["key"] Image#[:key] Purpose: Return the image property associated with "key" Returns: property value or nil if key doesn't exist Notes: Use Image#[]= (aset) to establish more properties or change the value of an existing property. */ VALUE Image_aref(VALUE self, VALUE key_arg) { Image *image; const char *key; const char *attr; image = rm_check_destroyed(self); switch (TYPE(key_arg)) { case T_NIL: return Qnil; case T_SYMBOL: key = rb_id2name((ID)SYM2ID(key_arg)); break; default: key = StringValuePtr(key_arg); if (*key == '\0') { return Qnil; } break; } if (rm_strcasecmp(key, "EXIF:*") == 0) { return rm_exif_by_entry(image); } else if (rm_strcasecmp(key, "EXIF:!") == 0) { return rm_exif_by_number(image); } attr = rm_get_property(image, key); return attr ? rb_str_new2(attr) : Qnil; } /* Method: Image#["key"] = attr Image#[:key] = attr Purpose: Update or add image attribute "key" Returns: self Notes: Specify attr=nil to remove the key from the list. SetImageAttribute normally APPENDS the new value to any existing value. Since this usage is tremendously counter-intuitive, this function always deletes the existing value before setting the new value. There's no use checking the return value since SetImageAttribute returns "False" for many reasons, some legitimate. */ VALUE Image_aset(VALUE self, VALUE key_arg, VALUE attr_arg) { Image *image; const char *key; char *attr; unsigned int okay; image = rm_check_frozen(self); attr = attr_arg == Qnil ? NULL : StringValuePtr(attr_arg); switch (TYPE(key_arg)) { case T_NIL: return self; case T_SYMBOL: key = rb_id2name((ID)SYM2ID(key_arg)); break; default: key = StringValuePtr(key_arg); if (*key == '\0') { return self; } break; } // Delete existing value. SetImageAttribute returns False if // the attribute doesn't exist - we don't care. (void) rm_set_property(image, key, NULL); // Set new value if (attr) { okay = rm_set_property(image, key, attr); if (!okay) { rb_warning("SetImageAttribute failed (probably out of memory)"); } } return self; } /* Static: crisscross Purpose: Handle #transverse, #transform methods */ static VALUE crisscross( int bang, VALUE self, Image *fp(const Image *, ExceptionInfo *)) { Image *image, *new_image; ExceptionInfo exception; Data_Get_Struct(self, Image, image); GetExceptionInfo(&exception); new_image = (fp)(image, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); if (bang) { UPDATE_DATA_PTR(self, new_image); (void) rm_image_destroy(image); return self; } return rm_image_new(new_image); } /* Method: Image#auto_orient Purpose: Implement mogrify's -auto_orient option automatically orient image based on EXIF orientation value Notes: See mogrify.c in ImageMagick 6.2.8. */ static VALUE auto_orient(int bang, VALUE self) { Image *image; volatile VALUE new_image; VALUE degrees[1]; Data_Get_Struct(self, Image, image); switch (image->orientation) { case TopRightOrientation: new_image = flipflop(bang, self, FlopImage); break; case BottomRightOrientation: degrees[0] = rb_float_new(180.0); new_image = rotate(bang, 1, degrees, self); break; case BottomLeftOrientation: new_image = flipflop(bang, self, FlipImage); break; case LeftTopOrientation: new_image = crisscross(bang, self, TransposeImage); break; case RightTopOrientation: degrees[0] = rb_float_new(90.0); new_image = rotate(bang, 1, degrees, self); break; case RightBottomOrientation: new_image = crisscross(bang, self, TransverseImage); break; case LeftBottomOrientation: degrees[0] = rb_float_new(270.0); new_image = rotate(bang, 1, degrees, self); break; default: // Return IMMEDIATELY return bang ? Qnil : Image_copy(self); break; } Data_Get_Struct(new_image, Image, image); image->orientation = TopLeftOrientation; return new_image; } VALUE Image_auto_orient(VALUE self) { (void) rm_check_destroyed(self); return auto_orient(False, self); } /* Returns nil if the image is already properly oriented */ VALUE Image_auto_orient_bang(VALUE self) { (void) rm_check_frozen(self); return auto_orient(True, self); } /* Method: Image#background_color Purpose: Return the name of the background color as a String. */ VALUE Image_background_color(VALUE self) { Image *image = rm_check_destroyed(self); return PixelPacket_to_Color_Name(image, &image->background_color); } /* Method: Image#background_color= Purpose: Set the the background color to the specified color spec. */ VALUE Image_background_color_eq(VALUE self, VALUE color) { Image *image = rm_check_frozen(self); Color_to_PixelPacket(&image->background_color, color); return self; } /* Method: Image#base_columns Purpose: Return the number of rows (before transformations) */ VALUE Image_base_columns(VALUE self) { Image *image = rm_check_destroyed(self); return INT2FIX(image->magick_columns); } /* Method: Image#base_filename Purpose: Return the image filename (before transformations) Notes: If there is no base filename, return the current filename. */ VALUE Image_base_filename(VALUE self) { Image *image = rm_check_destroyed(self); if (*image->magick_filename) { return rb_str_new2(image->magick_filename); } else { return rb_str_new2(image->filename); } } /* Method: Image#base_rows Purpose: Return the number of rows (before transformations) */ VALUE Image_base_rows(VALUE self) { Image *image = rm_check_destroyed(self); return INT2FIX(image->magick_rows); } /* Method: Image#bias -> bias Image#bias = a number between 0.0 and 1.0 or "NN%" Purpose: Get/set image bias (used when convolving an image) */ VALUE Image_bias(VALUE self) { Image *image = rm_check_destroyed(self); return rb_float_new(image->bias); } VALUE Image_bias_eq(VALUE self, VALUE pct) { Image *image; double bias; image = rm_check_frozen(self); bias = rm_percentage(pct); image->bias = bias * QuantumRange; return self; } /* * Method: Image#bilevel_channel(threshold, channel=AllChannels) * Returns a new image */ VALUE Image_bilevel_channel(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; ChannelType channels; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); if (argc > 1) { raise_ChannelType_error(argv[argc-1]); } if (argc == 0) { rb_raise(rb_eArgError, "no threshold specified"); } new_image = rm_clone_image(image); (void)BilevelImageChannel(new_image, channels, NUM2DBL(argv[0])); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image#black_point_compensation Purpose: Return current value */ VALUE Image_black_point_compensation(VALUE self) { Image *image; const char *attr; volatile VALUE value; image = rm_check_destroyed(self); attr = rm_get_property(image, BlackPointCompensationKey); if (attr && rm_strcasecmp(attr, "true") == 0) { value = Qtrue; } else { value = Qfalse; } return value; } /* Method: Image#black_point_compensation=true or false Purpose: Set black point compensation attribute */ VALUE Image_black_point_compensation_eq(VALUE self, VALUE arg) { Image *image; char *value; image = rm_check_frozen(self); (void) rm_set_property(image, BlackPointCompensationKey, NULL); value = RTEST(arg) ? "true" : "false"; (void) rm_set_property(image, BlackPointCompensationKey, value); return self; } /* * Method: Image#black_threshold(red_channel [, green_channel * [, blue_channel [, opacity_channel]]]); * Purpose: Call BlackThresholdImage */ VALUE Image_black_threshold(int argc, VALUE *argv, VALUE self) { return threshold_image(argc, argv, self, BlackThresholdImage); } /* Static: get_relative_offsets Purpose: compute offsets using the gravity to determine what the offsets are relative to */ static void get_relative_offsets( VALUE grav, Image *image, Image *mark, long *x_offset, long *y_offset) { MagickEnum *magick_enum; GravityType gravity; VALUE_TO_ENUM(grav, gravity, GravityType); switch (gravity) { case NorthEastGravity: case EastGravity: case SouthEastGravity: *x_offset = (long)(image->columns) - (long)(mark->columns) - *x_offset; break; case NorthGravity: case SouthGravity: case CenterGravity: case StaticGravity: *x_offset += (long)(image->columns/2) - (long)(mark->columns/2); break; default: break; } switch (gravity) { case SouthWestGravity: case SouthGravity: case SouthEastGravity: *y_offset = (long)(image->rows) - (long)(mark->rows) - *y_offset; break; case EastGravity: case WestGravity: case CenterGravity: case StaticGravity: *y_offset += (long)(image->rows/2) - (long)(mark->rows/2); break; case NorthEastGravity: case NorthGravity: // Don't let these run into the default case break; default: Data_Get_Struct(grav, MagickEnum, magick_enum); rb_warning("gravity type `%s' has no effect", rb_id2name(magick_enum->id)); break; } } /* Static: get_offsets_from_gravity Purpose: compute watermark offsets from gravity type */ static void get_offsets_from_gravity( GravityType gravity, Image *image, Image *mark, long *x_offset, long *y_offset) { switch (gravity) { case ForgetGravity: case NorthWestGravity: *x_offset = 0; *y_offset = 0; break; case NorthGravity: *x_offset = ((long)(image->columns) - (long)(mark->columns)) / 2; *y_offset = 0; break; case NorthEastGravity: *x_offset = (long)(image->columns) - (long)(mark->columns); *y_offset = 0; break; case WestGravity: *x_offset = 0; *y_offset = ((long)(image->rows) - (long)(mark->rows)) / 2; break; case StaticGravity: case CenterGravity: default: *x_offset = ((long)(image->columns) - (long)(mark->columns)) / 2; *y_offset = ((long)(image->rows) - (long)(mark->rows)) / 2; break; case EastGravity: *x_offset = (long)(image->columns) - (long)(mark->columns); *y_offset = ((long)(image->rows) - (long)(mark->rows)) / 2; break; case SouthWestGravity: *x_offset = 0; *y_offset = (long)(image->rows) - (long)(mark->rows); break; case SouthGravity: *x_offset = ((long)(image->columns) - (long)(mark->columns)) / 2; *y_offset = (long)(image->rows) - (long)(mark->rows); break; case SouthEastGravity: *x_offset = (long)(image->columns) - (long)(mark->columns); *y_offset = (long)(image->rows) - (long)(mark->rows); break; } } /* Static: check_for_long_value Purpose: called from rb_protect, returns the number if obj is really a numeric value. */ static VALUE check_for_long_value(VALUE obj) { long t; t = NUM2LONG(obj); t = t; // placate gcc return(VALUE)0; } /* Static: get_composite_offsets Purpose: compute x- and y-offset of source image for a compositing method */ static void get_composite_offsets( int argc, VALUE *argv, Image *dest, Image *src, long *x_offset, long *y_offset) { GravityType gravity; int exc = 0; if (CLASS_OF(argv[0]) == Class_GravityType) { VALUE_TO_ENUM(argv[0], gravity, GravityType); switch (argc) { // Gravity + offset(s). Offsets are relative to the image edges // as specified by the gravity. case 3: *y_offset = NUM2LONG(argv[2]); case 2: *x_offset = NUM2LONG(argv[1]); get_relative_offsets(argv[0], dest, src, x_offset, y_offset); break; case 1: // No offsets specified. Compute offset based on the gravity alone. get_offsets_from_gravity(gravity, dest, src, x_offset, y_offset); break; } } // Gravity not specified at all. Offsets are measured from the // NorthWest corner. The arguments must be numbers. else { (void)rb_protect(check_for_long_value, argv[0], &exc); if (exc) { rb_raise(rb_eTypeError, "expected GravityType, got %s" , rb_class2name(CLASS_OF(argv[0]))); } *x_offset = NUM2LONG(argv[0]); if (argc > 1) { *y_offset = NUM2LONG(argv[1]); } } } /* Static: blend_geometry Purpose: Convert 2 doubles to a blend or dissolve geometry string. Notes: the geometry buffer needs to be at least 16 characters long. For safety's sake this function asserts that it is at least 20 characters long. The percentages must be in the range -1000 < n < 1000. This is far in excess of what xMagick will allow. */ static void blend_geometry( char *geometry, size_t geometry_l, double src_percent, double dst_percent) { size_t sz = 0; int fw, prec; if (fabs(src_percent) >= 1000.0 || fabs(dst_percent) >= 1000.0) { if (fabs(src_percent) < 1000.0) { src_percent = dst_percent; } rb_raise(rb_eArgError, "%g is out of range +/-999.99", src_percent); } assert(geometry_l >= 20); memset(geometry, 0xdf, geometry_l); fw = 4; prec = 0; if (src_percent != floor(src_percent)) { prec = 2; fw += 3; } sz = (size_t)sprintf(geometry, "%*.*f", -fw, prec, src_percent); assert(sz < geometry_l); sz = strcspn(geometry, " "); // if dst_percent was nil don't add to the geometry if (dst_percent != -1.0) { fw = 4; prec = 0; if (dst_percent != floor(dst_percent)) { prec = 2; fw += 3; } sz += (size_t)sprintf(geometry+sz, "x%*.*f", -fw, prec, dst_percent); assert(sz < geometry_l); sz = strcspn(geometry, " "); } if (sz < geometry_l) { memset(geometry+sz, 0x00, geometry_l-sz); } } static VALUE special_composite( Image *image, Image *overlay, double image_pct, double overlay_pct, long x_off, long y_off, CompositeOperator op) { Image *new_image; char geometry[20]; blend_geometry(geometry, sizeof(geometry), image_pct, overlay_pct); (void) CloneString(&overlay->geometry, geometry); new_image = rm_clone_image(image); (void) CompositeImage(new_image, op, overlay, x_off, y_off); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image#blend(overlay, src_percent, dst_percent, x_offset=0, y_offset=0) Image#dissolve(overlay, src_percent, dst_percent, gravity, x_offset=0, y_offset=0) Purpose: Corresponds to the composite -blend operation Notes: `percent' can be a number or a string in the form "NN%" The default value for dst_percent is 100.0-src_percent */ VALUE Image_blend(int argc, VALUE *argv, VALUE self) { volatile VALUE ovly; Image *image, *overlay; double src_percent, dst_percent; long x_offset = 0L, y_offset = 0L; image = rm_check_destroyed(self); if (argc < 1) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 2 to 6)", argc); } ovly = ImageList_cur_image(argv[0]); overlay = rm_check_destroyed(ovly); if (argc > 3) { get_composite_offsets(argc-3, &argv[3], image, overlay, &x_offset, &y_offset); // There must be 3 arguments left argc = 3; } switch (argc) { case 3: dst_percent = rm_percentage(argv[2]) * 100.0; src_percent = rm_percentage(argv[1]) * 100.0; break; case 2: src_percent = rm_percentage(argv[1]) * 100.0; dst_percent = FMAX(100.0 - src_percent, 0); break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 2 to 6)", argc); break; } return special_composite(image, overlay, src_percent, dst_percent , x_offset, y_offset, BlendCompositeOp); } DEF_ATTR_ACCESSOR(Image, blur, dbl) /* * Method: Image#blur_channel(radius = 0.0, sigma = 1.0, channel=AllChannels) * Purpose: Call BlurImageChannel */ VALUE Image_blur_channel(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; ExceptionInfo exception; ChannelType channels; double radius = 0.0, sigma = 1.0; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); // There can be 0, 1, or 2 remaining arguments. switch (argc) { case 2: sigma = NUM2DBL(argv[1]); case 1: radius = NUM2DBL(argv[0]); case 0: break; default: raise_ChannelType_error(argv[argc-1]); } GetExceptionInfo(&exception); new_image = BlurImageChannel(image, channels, radius, sigma, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#blur_image(radius=0.0, sigma=1.0) Purpose: Blur the image Notes: The "blur" name is used for the attribute */ VALUE Image_blur_image(int argc, VALUE *argv, VALUE self) { return effect_image(self, argc, argv, BlurImage); } /* Method: Image#border(width, height, color) Image#border!(width, height, color) Purpose: surrounds the image with a border of the specified width, height, and named color */ static VALUE border( int bang, VALUE self, VALUE width, VALUE height, VALUE color) { Image *image, *new_image; PixelPacket old_border; ExceptionInfo exception; RectangleInfo rect; Data_Get_Struct(self, Image, image); memset(&rect, 0, sizeof(rect)); rect.width = NUM2UINT(width); rect.height = NUM2UINT(height); // Save current border color - we'll want to restore it afterwards. old_border = image->border_color; Color_to_PixelPacket(&image->border_color, color); GetExceptionInfo(&exception); new_image = BorderImage(image, &rect, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); if (bang) { new_image->border_color = old_border; UPDATE_DATA_PTR(self, new_image); (void) rm_image_destroy(image); return self; } image->border_color = old_border; return rm_image_new(new_image); } VALUE Image_border_bang( VALUE self, VALUE width, VALUE height, VALUE color) { (void) rm_check_frozen(self); return border(True, self, width, height, color); } VALUE Image_border( VALUE self, VALUE width, VALUE height, VALUE color) { (void) rm_check_destroyed(self); return border(False, self, width, height, color); } /* Method: Image#border_color Purpose: Return the name of the border color as a String. */ VALUE Image_border_color(VALUE self) { Image *image = rm_check_destroyed(self); return PixelPacket_to_Color_Name(image, &image->border_color); } /* Method: Image#border_color= Purpose: Set the the border color */ VALUE Image_border_color_eq(VALUE self, VALUE color) { Image *image = rm_check_frozen(self); Color_to_PixelPacket(&image->border_color, color); return self; } /* Method: Image#bounding_box Purpose: returns the bounding box of an image canvas */ VALUE Image_bounding_box(VALUE self) { Image *image; RectangleInfo box; ExceptionInfo exception; image = rm_check_destroyed(self); GetExceptionInfo(&exception); box = GetImageBoundingBox(image, &exception); CHECK_EXCEPTION() (void) DestroyExceptionInfo(&exception); return Rectangle_from_RectangleInfo(&box); } /* Method: Image.capture(silent=false, frame=false, descend=false, screen=false, borders=false) { optional parms } Purpose: do a screen capture */ VALUE Image_capture( int argc, VALUE *argv, VALUE self) { Image *image; ImageInfo *image_info; volatile VALUE info_obj; XImportInfo ximage_info; self = self; // Suppress "never referenced" message from icc XGetImportInfo(&ximage_info); switch (argc) { case 5: ximage_info.borders = (MagickBooleanType)RTEST(argv[4]); case 4: ximage_info.screen = (MagickBooleanType)RTEST(argv[3]); case 3: ximage_info.descend = (MagickBooleanType)RTEST(argv[2]); case 2: ximage_info.frame = (MagickBooleanType)RTEST(argv[1]); case 1: ximage_info.silent = (MagickBooleanType)RTEST(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 to 5)", argc); break; } // Get optional parms. // Set info->filename = "root", window ID number or window name, // or nothing to do an interactive capture // Set info->server_name to the server name // Also info->colorspace, depth, dither, interlace, type info_obj = rm_info_new(); Data_Get_Struct(info_obj, Info, image_info); // If an error occurs, IM will call our error handler and we raise an exception. image = XImportImage(image_info, &ximage_info); rm_check_image_exception(image, DestroyOnError); rm_ensure_result(image); return rm_image_new(image); } /* Method: Image#change_geometry(geometry_string) { |cols, rows, image| } Purpose: parse geometry string, compute new image geometry */ VALUE Image_change_geometry(VALUE self, VALUE geom_arg) { Image *image; RectangleInfo rect; volatile VALUE geom_str; char *geometry; unsigned int flags; volatile VALUE ary; image = rm_check_destroyed(self); geom_str = rb_funcall(geom_arg, rm_ID_to_s, 0); geometry = StringValuePtr(geom_str); memset(&rect, 0, sizeof(rect)); flags = ParseSizeGeometry(image, geometry, &rect); if (flags == NoValue) { rb_raise(rb_eArgError, "invalid geometry string `%s'", geometry); } ary = rb_ary_new2(3); rb_ary_store(ary, 0, ULONG2NUM(rect.width)); rb_ary_store(ary, 1, ULONG2NUM(rect.height)); rb_ary_store(ary, 2, self); return rb_yield(ary); } /* Method: Image#changed? Purpose: Return true if any pixel in the image has been altered since the image was constituted. */ VALUE Image_changed_q(VALUE self) { Image *image = rm_check_destroyed(self); VALUE okay = IsTaintImage(image) ? Qtrue : Qfalse; rm_check_image_exception(image, RetainOnError); return okay; } /* Method: Image#channel Purpose: Extract a channel from the image. A channel is a particular color component of each pixel in the image. */ VALUE Image_channel(VALUE self, VALUE channel_arg) { Image *image, *new_image; ChannelType channel; image = rm_check_destroyed(self); VALUE_TO_ENUM(channel_arg, channel, ChannelType); new_image = rm_clone_image(image); (void) SeparateImageChannel(new_image, channel); rm_check_image_exception(new_image, DestroyOnError); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#channel_depth(channel_depth=AllChannels) Purpose: GetImageChannelDepth */ VALUE Image_channel_depth(int argc, VALUE *argv, VALUE self) { Image *image; ChannelType channels; unsigned long channel_depth; ExceptionInfo exception; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); // Ensure all arguments consumed. if (argc > 0) { raise_ChannelType_error(argv[argc-1]); } GetExceptionInfo(&exception); channel_depth = GetImageChannelDepth(image, channels, &exception); CHECK_EXCEPTION() (void) DestroyExceptionInfo(&exception); return ULONG2NUM(channel_depth); } /* Method: Image#channel_extrema(channel=AllChannels) Purpose: Returns an array [min, max] where 'min' and 'max' are the minimum and maximum values of all channels. Notes: GM's implementation is very different from ImageMagick. This method follows the IM API very closely and then shoehorn's the GM API to more-or-less fit. Note that IM allows you to specify more than one channel argument. GM does not. */ VALUE Image_channel_extrema(int argc, VALUE *argv, VALUE self) { Image *image; ChannelType channels; ExceptionInfo exception; unsigned long min, max; volatile VALUE ary; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); // Ensure all arguments consumed. if (argc > 0) { raise_ChannelType_error(argv[argc-1]); } GetExceptionInfo(&exception); (void) GetImageChannelExtrema(image, channels, &min, &max, &exception); CHECK_EXCEPTION() (void) DestroyExceptionInfo(&exception); ary = rb_ary_new2(2); rb_ary_store(ary, 0, ULONG2NUM(min)); rb_ary_store(ary, 1, ULONG2NUM(max)); return ary; } /* * Method: Image#channel_mean(channel=AllChannels) * Returns An array [mean, std. deviation] */ VALUE Image_channel_mean(int argc, VALUE *argv, VALUE self) { Image *image; ChannelType channels; ExceptionInfo exception; double mean, stddev; volatile VALUE ary; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); // Ensure all arguments consumed. if (argc > 0) { raise_ChannelType_error(argv[argc-1]); } GetExceptionInfo(&exception); (void) GetImageChannelMean(image, channels, &mean, &stddev, &exception); CHECK_EXCEPTION() (void) DestroyExceptionInfo(&exception); ary = rb_ary_new2(2); rb_ary_store(ary, 0, rb_float_new(mean)); rb_ary_store(ary, 1, rb_float_new(stddev)); return ary; } /* Method: Image#charcoal(radius=0.0, sigma=1.0) Purpose: Return a new image that is a copy of the input image with the edges highlighted */ VALUE Image_charcoal(int argc, VALUE *argv, VALUE self) { return effect_image(self, argc, argv, CharcoalImage); } /* Method: Image#check_destroyed Purpose: If the target image has been destroyed, raises Magick::DestroyedImageError */ VALUE Image_check_destroyed(VALUE self) { (void) rm_check_destroyed(self); return Qnil; } /* Method: Image#chop Purpose: removes a region of an image and collapses the image to occupy the removed portion */ VALUE Image_chop( VALUE self, VALUE x, VALUE y, VALUE width, VALUE height) { (void) rm_check_destroyed(self); return xform_image(False, self, x, y, width, height, ChopImage); } /* Method: Image#chromaticity Purpose: Return the red, green, blue, and white-point chromaticity values as a Magick::ChromaticityInfo. */ VALUE Image_chromaticity(VALUE self) { Image *image = rm_check_destroyed(self); return ChromaticityInfo_new(&image->chromaticity); } /* Method: Image#chromaticity= Purpose: Set the red, green, blue, and white-point chromaticity values from a Magick::ChromaticityInfo. */ VALUE Image_chromaticity_eq(VALUE self, VALUE chroma) { Image *image = rm_check_frozen(self); ChromaticityInfo_to_ChromaticityInfo(&image->chromaticity, chroma); return self; } /* Method: Image#clone Purpose: Copy an image, along with its frozen and tainted state. */ VALUE Image_clone(VALUE self) { volatile VALUE clone; clone = Image_dup(self); if (OBJ_FROZEN(self)) { OBJ_FREEZE(clone); } return clone; } /* Method: Image#clut_channel Purpose: Equivalent to -clut option. */ VALUE Image_clut_channel(int argc, VALUE *argv, VALUE self) { #if defined(HAVE_CLUTIMAGECHANNEL) Image *image, *clut; ChannelType channels; MagickBooleanType okay; image = rm_check_frozen(self); // check_destroyed before confirming the arguments if (argc >= 1) { (void) rm_check_destroyed(argv[0]); channels = extract_channels(&argc, argv); if (argc != 1) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 1 or more)", argc); } } else { rb_raise(rb_eArgError, "wrong number of arguments (%d for 1 or more)", argc); } Data_Get_Struct(argv[0], Image, clut); okay = ClutImageChannel(image, channels, clut); rm_check_image_exception(image, RetainOnError); rm_check_image_exception(clut, RetainOnError); if (!okay) { rb_raise(rb_eRuntimeError, "ClutImageChannel failed."); } return self; #else argc = argc; argv = argv; self = self; rm_not_implemented(); return(VALUE)0; #endif } /* Method: Image_color_histogram(VALUE self); Purpose: Call GetImageHistogram Notes: returns hash {aPixel=>count} */ VALUE Image_color_histogram(VALUE self) { Image *image, *dc_copy = NULL; volatile VALUE hash, pixel; unsigned long x, colors; ColorPacket *histogram; ExceptionInfo exception; image = rm_check_destroyed(self); // If image not DirectClass make a DirectClass copy. if (image->storage_class != DirectClass) { dc_copy = rm_clone_image(image); (void) SyncImage(dc_copy); magick_free(dc_copy->colormap); dc_copy->colormap = NULL; dc_copy->storage_class = DirectClass; image = dc_copy; } GetExceptionInfo(&exception); histogram = GetImageHistogram(image, &colors, &exception); if (histogram == NULL) { if (dc_copy) { (void) DestroyImage(dc_copy); } rb_raise(rb_eNoMemError, "not enough memory to continue"); } if (exception.severity != UndefinedException) { (void) RelinquishMagickMemory(histogram); rm_check_exception(&exception, dc_copy, DestroyOnError); } (void) DestroyExceptionInfo(&exception); hash = rb_hash_new(); for (x = 0; x < colors; x++) { pixel = Pixel_from_PixelPacket(&histogram[x].pixel); (void) rb_hash_aset(hash, pixel, ULONG2NUM((unsigned long)histogram[x].count)); } /* Christy evidently didn't agree with Bob's memory management. */ (void) RelinquishMagickMemory(histogram); if (dc_copy) { // Do not trace destruction (void) DestroyImage(dc_copy); } return hash; } /* Static: set_profile(target_image, name, profile_image) Purpose: The `profile_image' argument is an IPTC or ICC profile. Store all the profiles in the profile in the target image. Called from Image_color_profile_eq and Image_iptc_profile_eq */ static VALUE set_profile(VALUE self, const char *name, VALUE profile) { Image *image, *profile_image; ImageInfo *info; const MagickInfo *m; ExceptionInfo exception; char *profile_name; char *profile_blob; long profile_length; const StringInfo *profile_data; image = rm_check_frozen(self); profile_blob = rm_str2cstr(profile, &profile_length); GetExceptionInfo(&exception); m = GetMagickInfo(name, &exception); CHECK_EXCEPTION() info = CloneImageInfo(NULL); if (!info) { rb_raise(rb_eNoMemError, "not enough memory to continue"); } strncpy(info->magick, m->name, MaxTextExtent); info->magick[MaxTextExtent-1] = '\0'; profile_image = BlobToImage(info, profile_blob, (size_t)profile_length, &exception); (void) DestroyImageInfo(info); CHECK_EXCEPTION() (void) DestroyExceptionInfo(&exception); ResetImageProfileIterator(profile_image); profile_name = GetNextImageProfile(profile_image); while (profile_name) { if (rm_strcasecmp(profile_name, name) == 0) { profile_data = GetImageProfile(profile_image, profile_name); if (profile) { (void)ProfileImage(image, profile_name, profile_data->datum , (unsigned long)profile_data->length , (MagickBooleanType)MagickFalse); if (image->exception.severity >= ErrorException) { break; } } } profile_name = GetNextImageProfile(profile_image); } (void) DestroyImage(profile_image); rm_check_image_exception(image, RetainOnError); return self; } /* Method: Image#color_profile Purpose: Return the ICC color profile as a String. Notes: If there is no profile, returns "" This method has no real use but is retained for compatibility with earlier releases of RMagick, where it had no real use either. */ VALUE Image_color_profile(VALUE self) { Image *image; const StringInfo *profile; image = rm_check_destroyed(self); profile = GetImageProfile(image, "icc"); if (!profile) { return Qnil; } return rb_str_new((char *)profile->datum, (long)profile->length); } /* Method: Image#color_profile=(String) Purpose: Set the ICC color profile. The argument is a string. Notes: Pass nil to remove any existing profile. Removes any existing profile before adding the new one. */ VALUE Image_color_profile_eq(VALUE self, VALUE profile) { (void) Image_delete_profile(self, rb_str_new2("ICC")); if (profile != Qnil) { (void) set_profile(self, "ICC", profile); } return self; } /* Method: Image#color_flood_fill(target_color, fill_color, x, y, method) Purpose: changes the color value of any pixel that matches target_color and is an immediate neighbor. Notes: use fuzz= to specify the tolerance amount (see Image_opaque) Accepts either the FloodfillMethod or the FillToBorderMethod */ VALUE Image_color_flood_fill( VALUE self, VALUE target_color, VALUE fill_color, VALUE xv, VALUE yv, VALUE method) { Image *image, *new_image; PixelPacket target; DrawInfo *draw_info; PixelPacket fill; long x, y; int fill_method; image = rm_check_destroyed(self); // The target and fill args can be either a color name or // a Magick::Pixel. Color_to_PixelPacket(&target, target_color); Color_to_PixelPacket(&fill, fill_color); x = NUM2LONG(xv); y = NUM2LONG(yv); if ((unsigned long)x > image->columns || (unsigned long)y > image->rows) { rb_raise(rb_eArgError, "target out of range. %lux%lu given, image is %lux%lu" , x, y, image->columns, image->rows); } VALUE_TO_ENUM(method, fill_method, PaintMethod); if (!(fill_method == FloodfillMethod || fill_method == FillToBorderMethod)) { rb_raise(rb_eArgError, "paint method must be FloodfillMethod or " "FillToBorderMethod (%d given)", fill_method); } draw_info = CloneDrawInfo(NULL, NULL); if (!draw_info) { rb_raise(rb_eNoMemError, "not enough memory to continue"); } draw_info->fill = fill; new_image = rm_clone_image(image); (void) ColorFloodfillImage(new_image, draw_info, target, x, y, (PaintMethod)fill_method); // No need to check for error (void) DestroyDrawInfo(draw_info); return rm_image_new(new_image); } /* Method: Image#colorize(r, g, b, target) Purpose: blends the fill color specified by "target" with each pixel in the image. Specify the percentage blend for each r, g, b component. */ VALUE Image_colorize( int argc, VALUE *argv, VALUE self) { Image *image, *new_image; double red, green, blue, matte; char opacity[50]; PixelPacket target; ExceptionInfo exception; image = rm_check_destroyed(self); if (argc == 4) { red = floor(100*NUM2DBL(argv[0])+0.5); green = floor(100*NUM2DBL(argv[1])+0.5); blue = floor(100*NUM2DBL(argv[2])+0.5); Color_to_PixelPacket(&target, argv[3]); sprintf(opacity, "%f/%f/%f", red, green, blue); } else if (argc == 5) { red = floor(100*NUM2DBL(argv[0])+0.5); green = floor(100*NUM2DBL(argv[1])+0.5); blue = floor(100*NUM2DBL(argv[2])+0.5); matte = floor(100*NUM2DBL(argv[3])+0.5); Color_to_PixelPacket(&target, argv[4]); sprintf(opacity, "%f/%f/%f/%f", red, green, blue, matte); } else { rb_raise(rb_eArgError, "wrong number of arguments (%d for 4 or 5)", argc); } GetExceptionInfo(&exception); new_image = ColorizeImage(image, opacity, target, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#colormap(index<, new-color>) Purpose: return the color in the colormap at the specified index. If a new color is specified, replaces the color at the index with the new color. Returns: the name of the color. Notes: The "new-color" argument can be either a color name or a Magick::Pixel. */ VALUE Image_colormap(int argc, VALUE *argv, VALUE self) { Image *image; unsigned long index; PixelPacket color, new_color; image = rm_check_destroyed(self); // We can handle either 1 or 2 arguments. Nothing else. if (argc == 0 || argc > 2) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 1 or 2)", argc); } index = NUM2ULONG(argv[0]); if (index > QuantumRange) { rb_raise(rb_eIndexError, "index out of range"); } // If this is a simple "get" operation, ensure the image has a colormap. if (argc == 1) { if (!image->colormap) { rb_raise(rb_eIndexError, "image does not contain a colormap"); } // Validate the index if (index > image->colors-1) { rb_raise(rb_eIndexError, "index out of range"); } return PixelPacket_to_Color_Name(image, &image->colormap[index]); } // This is a "set" operation. Things are different. rb_check_frozen(self); // Replace with new color? The arg can be either a color name or // a Magick::Pixel. Color_to_PixelPacket(&new_color, argv[1]); // Handle no colormap or current colormap too small. if (!image->colormap || index > image->colors-1) { PixelPacket black; unsigned long i; memset(&black, 0, sizeof(black)); if (!image->colormap) { image->colormap = (PixelPacket *)magick_safe_malloc((index+1), sizeof(PixelPacket)); image->colors = 0; } else { image->colormap = (PixelPacket *)magick_safe_realloc(image->colormap, (index+1), sizeof(PixelPacket)); } for (i = image->colors; i < index; i++) { image->colormap[i] = black; } image->colors = index+1; } // Save the current color so we can return it. Set the new color. color = image->colormap[index]; image->colormap[index] = new_color; return PixelPacket_to_Color_Name(image, &color); } DEF_ATTR_READER(Image, colors, ulong) /* Method: Image#colorspace Purpose: Return theImage pixel interpretation. If the colorspace is RGB the pixels are red, green, blue. If matte is true, then red, green, blue, and index. If it is CMYK, the pixels are cyan, yellow, magenta, black. Otherwise the colorspace is ignored. */ VALUE Image_colorspace(VALUE self) { Image *image; image = rm_check_destroyed(self); return ColorspaceType_new(image->colorspace); } /* Method: Image#colorspace=Magick::ColorspaceType Purpose: Set the image's colorspace Notes: Ref: Magick++'s Magick::colorSpace method */ VALUE Image_colorspace_eq(VALUE self, VALUE colorspace) { Image *image; ColorspaceType new_cs; image = rm_check_frozen(self); VALUE_TO_ENUM(colorspace, new_cs, ColorspaceType); (void) SetImageColorspace(image, new_cs); return self; } DEF_ATTR_READER(Image, columns, int) /* Method: new_image = Image.combine(red[, green[, blue[, opacity]]]) Purpose: Combines the Red channel of the first image with the Green channel of the 2nd image and the Blue channel of the 3rd image. Any of the image arguments may be omitted or replaced by nil. Calls CombineImages */ VALUE Image_combine(int argc, VALUE *argv, VALUE self) { ChannelType channel = 0; Image *image, *images = NULL, *new_image; ExceptionInfo exception; self = self; // defeat "unreferenced argument" message switch (argc) { case 4: if (argv[3] != Qnil) { channel |= OpacityChannel; image = rm_check_destroyed(argv[3]); AppendImageToList(&images, image); } case 3: if (argv[2] != Qnil) { channel |= BlueChannel; image = rm_check_destroyed(argv[2]); AppendImageToList(&images, image); } case 2: if (argv[1] != Qnil) { channel |= GreenChannel; image = rm_check_destroyed(argv[1]); AppendImageToList(&images, image); } case 1: if (argv[0] != Qnil) { channel |= RedChannel; image = rm_check_destroyed(argv[0]); AppendImageToList(&images, image); } break; default: rb_raise(rb_eArgError, "wrong number of arguments (1 to 4 expected, got %d)", argc); } if (channel == 0) { rb_raise(rb_eArgError, "no images to combine"); } GetExceptionInfo(&exception); ReverseImageList(&images); new_image = CombineImages(images, channel, &exception); rm_check_exception(&exception, images, RetainOnError); rm_split(images); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#compare_channel(ref_image, metric [, channel...]) Purpose: compares one or more channels in two images and returns the specified distortion metric and a comparison image. Notes: If no channels are specified, the default is AllChannels. That case is the equivalent of the CompareImages method in ImageMagick. Originally this method was called channel_compare, but that doesn't match the general naming convention that methods which accept multiple optional ChannelType arguments have names that end in _channel. So I renamed the method to compare_channel but kept channel_compare as an alias. */ VALUE Image_compare_channel( int argc, VALUE *argv, VALUE self) { Image *image, *r_image, *difference_image; double distortion; volatile VALUE ary, ref; MetricType metric_type; ChannelType channels; ExceptionInfo exception; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); if (argc > 2) { raise_ChannelType_error(argv[argc-1]); } if (argc != 2) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 2 or more)", argc); } ref = ImageList_cur_image(argv[0]); r_image = rm_check_destroyed(ref); VALUE_TO_ENUM(argv[1], metric_type, MetricType); GetExceptionInfo(&exception); difference_image = CompareImageChannels(image , r_image , channels , metric_type , &distortion , &exception); rm_check_exception(&exception, difference_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(difference_image); ary = rb_ary_new2(2); rb_ary_store(ary, 0, rm_image_new(difference_image)); rb_ary_store(ary, 1, rb_float_new(distortion)); return ary; } /* Method: Image#compose -> composite_op Purpose: Return the composite operator attribute */ VALUE Image_compose(VALUE self) { Image *image = rm_check_destroyed(self); return CompositeOperator_new(image->compose); } /* Method: Image#compose=composite_op Purpose: Set the composite operator attribute */ VALUE Image_compose_eq( VALUE self, VALUE compose_arg) { Image *image = rm_check_frozen(self); VALUE_TO_ENUM(compose_arg, image->compose, CompositeOperator); return self; } /* Method: Image#composite(image, x_off, y_off, composite_op) Image#composite(image, gravity, composite_op) Image#composite(image, gravity, x_off, y_off, composite_op) Purpose: Call CompositeImage Notes: the other image can be either an Image or an Image. The use of the GravityType to position the composited image is based on Magick++. The `gravity' argument has the same effect as the -gravity option does in the `composite' utility. Returns: new composited image, or nil */ static VALUE composite( int bang, int argc, VALUE *argv, VALUE self, ChannelType channels) { Image *image, *new_image; Image *comp_image; CompositeOperator operator = UndefinedCompositeOp; GravityType gravity; MagickEnum *magick_enum; volatile VALUE comp; signed long x_offset = 0; signed long y_offset = 0; image = rm_check_destroyed(self); if (bang) { rb_check_frozen(self); } if (argc < 3 || argc > 5) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 3, 4, or 5)", argc); } comp = ImageList_cur_image(argv[0]); comp_image = rm_check_destroyed(comp); switch (argc) { case 3: // argv[1] is gravity, argv[2] is composite_op VALUE_TO_ENUM(argv[1], gravity, GravityType); VALUE_TO_ENUM(argv[2], operator, CompositeOperator); // convert gravity to x, y offsets switch (gravity) { case ForgetGravity: case NorthWestGravity: x_offset = 0; y_offset = 0; break; case NorthGravity: x_offset = ((long)(image->columns) - (long)(comp_image->columns)) / 2; y_offset = 0; break; case NorthEastGravity: x_offset = (long)(image->columns) - (long)(comp_image->columns); y_offset = 0; break; case WestGravity: x_offset = 0; y_offset = ((long)(image->rows) - (long)(comp_image->rows)) / 2; break; case StaticGravity: case CenterGravity: default: x_offset = ((long)(image->columns) - (long)(comp_image->columns)) / 2; y_offset = ((long)(image->rows) - (long)(comp_image->rows)) / 2; break; case EastGravity: x_offset = (long)(image->columns) - (long)(comp_image->columns); y_offset = ((long)(image->rows) - (long)(comp_image->rows)) / 2; break; case SouthWestGravity: x_offset = 0; y_offset = (long)(image->rows) - (long)(comp_image->rows); break; case SouthGravity: x_offset = ((long)(image->columns) - (long)(comp_image->columns)) / 2; y_offset = (long)(image->rows) - (long)(comp_image->rows); break; case SouthEastGravity: x_offset = (long)(image->columns) - (long)(comp_image->columns); y_offset = (long)(image->rows) - (long)(comp_image->rows); break; } break; case 4: // argv[1], argv[2] is x_off, y_off, // argv[3] is composite_op x_offset = NUM2LONG(argv[1]); y_offset = NUM2LONG(argv[2]); VALUE_TO_ENUM(argv[3], operator, CompositeOperator); break; case 5: VALUE_TO_ENUM(argv[1], gravity, GravityType); x_offset = NUM2LONG(argv[2]); y_offset = NUM2LONG(argv[3]); VALUE_TO_ENUM(argv[4], operator, CompositeOperator); switch (gravity) { case NorthEastGravity: case EastGravity: case SouthEastGravity: x_offset = ((long)(image->columns) - (long)(comp_image->columns)) - x_offset; break; case NorthGravity: case SouthGravity: case CenterGravity: case StaticGravity: x_offset += (long)(image->columns/2) - (long)(comp_image->columns/2); break; default: break; } switch (gravity) { case SouthWestGravity: case SouthGravity: case SouthEastGravity: y_offset = ((long)(image->rows) - (long)(comp_image->rows)) - y_offset; break; case EastGravity: case WestGravity: case CenterGravity: case StaticGravity: y_offset += (long)(image->rows/2) - (long)(comp_image->rows/2); break; case NorthEastGravity: case NorthGravity: // Don't let these run into the default case break; default: Data_Get_Struct(argv[1], MagickEnum, magick_enum); rb_warning("gravity type `%s' has no effect", rb_id2name(magick_enum->id)); break; } break; } if (bang) { (void) CompositeImageChannel(image, channels, operator, comp_image, x_offset, y_offset); rm_check_image_exception(image, RetainOnError); return self; } else { new_image = rm_clone_image(image); (void) CompositeImageChannel(new_image, channels, operator, comp_image, x_offset, y_offset); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } } VALUE Image_composite_bang( int argc, VALUE *argv, VALUE self) { return composite(True, argc, argv, self, DefaultChannels); } VALUE Image_composite( int argc, VALUE *argv, VALUE self) { return composite(False, argc, argv, self, DefaultChannels); } /* Method: Image#composite_affine(composite, affine_matrix) Purpose: composites the source over the destination image as dictated by the affine transform. */ VALUE Image_composite_affine( VALUE self, VALUE source, VALUE affine_matrix) { Image *image, *composite, *new_image; AffineMatrix affine; image = rm_check_destroyed(self); composite = rm_check_destroyed(source); new_image = rm_clone_image(image); AffineMatrix_to_AffineMatrix(&affine, affine_matrix); (void) DrawAffineImage(new_image, composite, &affine); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image#composite_channel(src_image, geometry, composite_operator[, channel...]) Image#composite_channel!(src_image, geometry, composite_operator[, channel...]) Purpose: Call CompositeImageChannel */ static VALUE composite_channel(int bang, int argc, VALUE *argv, VALUE self) { ChannelType channels; // Check destroyed before validating the arguments (void) rm_check_destroyed(self); channels = extract_channels(&argc, argv); // There must be 3, 4, or 5 remaining arguments. if (argc < 3) { rb_raise(rb_eArgError, "composite operator not specified"); } else if (argc > 5) { raise_ChannelType_error(argv[argc-1]); } return composite(bang, argc, argv, self, channels); } VALUE Image_composite_channel(int argc, VALUE *argv, VALUE self) { return composite_channel(False, argc, argv, self); } VALUE Image_composite_channel_bang(int argc, VALUE *argv, VALUE self) { return composite_channel(True, argc, argv, self); } /* Method: Image#compression Image#compression= Purpose: Get/set the compresion attribute */ VALUE Image_compression(VALUE self) { Image *image = rm_check_destroyed(self); return CompressionType_new(image->compression); } VALUE Image_compression_eq(VALUE self, VALUE compression) { Image *image = rm_check_frozen(self); VALUE_TO_ENUM(compression, image->compression, CompressionType); return self; } /* Method: Image#compress_colormap! Purpose: call CompressImageColormap Notes: API was CompressColormap until 5.4.9 */ VALUE Image_compress_colormap_bang(VALUE self) { Image *image = rm_check_frozen(self); (void) CompressImageColormap(image); rm_check_image_exception(image, RetainOnError); return self; } /* Method: Image.constitute(width, height, map, pixels) Purpose: Creates an Image from the supplied pixel data. The pixel data must be in scanline order, top-to-bottom. The pixel data is an array of either all Fixed or all Float elements. If Fixed, the elements must be in the range [0..QuantumRange]. If Float, the elements must be normalized [0..1]. The "map" argument reflects the expected ordering of the pixel array. It can be any combination or order of R = red, G = green, B = blue, A = alpha, C = cyan, Y = yellow, M = magenta, K = black, or I = intensity (for grayscale). The pixel array must have width X height X strlen(map) elements. Raises: ArgumentError, TypeError */ VALUE Image_constitute(VALUE class, VALUE width_arg, VALUE height_arg , VALUE map_arg, VALUE pixels_arg) { Image *image; ExceptionInfo exception; volatile VALUE pixel, pixel0; unsigned long width, height; long x, npixels; char *map; long map_l; union { volatile double *f; volatile Quantum *i; volatile void *v; } pixels; volatile VALUE pixel_class; StorageType stg_type; class = class; // Suppress "never referenced" message from icc // rb_Array converts objects that are not Arrays to Arrays if possible, // and raises TypeError if it can't. pixels_arg = rb_Array(pixels_arg); width = NUM2ULONG(width_arg); height = NUM2ULONG(height_arg); if (width == 0 || height == 0) { rb_raise(rb_eArgError, "width and height must be non-zero"); } map = rm_str2cstr(map_arg, &map_l); npixels = (long)(width * height * map_l); if (RARRAY_LEN(pixels_arg) != npixels) { rb_raise(rb_eArgError, "wrong number of array elements (%ld for %ld)" , RARRAY_LEN(pixels_arg), npixels); } // Inspect the first element in the pixels array to determine the expected // type of all the elements. Allocate the pixel buffer. pixel0 = rb_ary_entry(pixels_arg, 0); if (rb_obj_is_kind_of(pixel0, rb_cFloat) == Qtrue) { pixels.f = ALLOC_N(volatile double, npixels); stg_type = DoublePixel; pixel_class = rb_cFloat; } else if (rb_obj_is_kind_of(pixel0, rb_cInteger) == Qtrue) { pixels.i = ALLOC_N(volatile Quantum, npixels); stg_type = QuantumPixel; pixel_class = rb_cInteger; } else { rb_raise(rb_eTypeError, "element 0 in pixel array is %s, must be numeric" , rb_class2name(CLASS_OF(pixel0))); } // Convert the array elements to the appropriate C type, store in pixel // buffer. for (x = 0; x < npixels; x++) { pixel = rb_ary_entry(pixels_arg, x); if (rb_obj_is_kind_of(pixel, pixel_class) != Qtrue) { rb_raise(rb_eTypeError, "element %ld in pixel array is %s, expected %s" , x, rb_class2name(CLASS_OF(pixel)),rb_class2name(CLASS_OF(pixel0))); } if (pixel_class == rb_cFloat) { pixels.f[x] = (float) NUM2DBL(pixel); if (pixels.f[x] < 0.0 || pixels.f[x] > 1.0) { rb_raise(rb_eArgError, "element %ld is out of range [0..1]: %f", x, pixels.f[x]); } } else { pixels.i[x] = NUM2QUANTUM(pixel); } } GetExceptionInfo(&exception); // This is based on ConstituteImage in IM 5.5.7 image = AllocateImage(NULL); if (!image) { rb_raise(rb_eNoMemError, "not enough memory to continue."); } SetImageExtent(image, width, height); rm_check_image_exception(image, DestroyOnError); (void) SetImageBackgroundColor(image); rm_check_image_exception(image, DestroyOnError); (void) ImportImagePixels(image, 0, 0, width, height, map, stg_type, (void *)pixels.v); xfree((void *)pixels.v); rm_check_image_exception(image, DestroyOnError); (void) DestroyExceptionInfo(&exception); DestroyConstitute(); return rm_image_new(image); } /* Method: Image#contrast() Purpose: enhances the intensity differences between the lighter and darker elements of the image. Set sharpen to "true" to increase the image contrast otherwise the contrast is reduced. Notes: if omitted, "sharpen" defaults to 0 Returns: new contrasted image */ VALUE Image_contrast(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; unsigned int sharpen = 0; image = rm_check_destroyed(self); if (argc > 1) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 or 1)", argc); } else if (argc == 1) { sharpen = RTEST(argv[0]); } new_image = rm_clone_image(image); (void) ContrastImage(new_image, sharpen); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Static: get_black_white_point Purpose: Convert percentages to #pixels. If the white-point (2nd) argument is not supplied set it to #pixels - black-point. */ static void get_black_white_point( Image *image, int argc, VALUE *argv, double *black_point, double *white_point) { double pixels; pixels = (double) (image->columns * image->rows); switch (argc) { case 2: if (rm_check_num2dbl(argv[0])) { *black_point = NUM2DBL(argv[0]); } else { *black_point = pixels * rm_str_to_pct(argv[0]); } if (rm_check_num2dbl(argv[1])) { *white_point = NUM2DBL(argv[1]); } else { *white_point = pixels * rm_str_to_pct(argv[1]); } break; case 1: if (rm_check_num2dbl(argv[0])) { *black_point = NUM2DBL(argv[0]); } else { *black_point = pixels * rm_str_to_pct(argv[0]); } *white_point = pixels - *black_point; break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 1 or 2)", argc); break; } return; } /* Method: Image#contrast_stretch_channel(black_point <, white_point> <, channel...>) Purpose: Call ContrastStretchImageChannel Notes: If white_point is not specified then it is #pixels-black_point. Both black_point and white_point can be specified as Floats or as percentages, i.e. "10%" */ VALUE Image_contrast_stretch_channel(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; ChannelType channels; double black_point, white_point; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); if (argc > 2) { raise_ChannelType_error(argv[argc-1]); } get_black_white_point(image, argc, argv, &black_point, &white_point); new_image = rm_clone_image(image); (void) ContrastStretchImageChannel(new_image, channels, black_point, white_point); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image#convolve(order, kernel) Purpose: apply a custom convolution kernel to the image Notes: "order" is the number of rows and columns in the kernel "kernel" is an order**2 array of doubles */ VALUE Image_convolve( VALUE self, VALUE order_arg, VALUE kernel_arg) { Image *image, *new_image; volatile double *kernel; unsigned int x, order; ExceptionInfo exception; image = rm_check_destroyed(self); order = NUM2UINT(order_arg); kernel_arg = rb_Array(kernel_arg); rm_check_ary_len(kernel_arg, (long)(order*order)); // Convert the kernel array argument to an array of doubles kernel = (volatile double *)ALLOC_N(double, order*order); for (x = 0; x < order*order; x++) { kernel[x] = NUM2DBL(rb_ary_entry(kernel_arg, (long)x)); } GetExceptionInfo(&exception); new_image = ConvolveImage(image, order, (double *)kernel, &exception); xfree((double *)kernel); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* * Method: Image#convolve_channel(order, kernel[, channel[, channel...]]) * Purpose: call ConvolveImageChannel */ VALUE Image_convolve_channel( int argc, VALUE *argv, VALUE self) { Image *image, *new_image; volatile double *kernel; volatile VALUE ary; unsigned int x, order; ChannelType channels; ExceptionInfo exception; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); // There are 2 required arguments. if (argc > 2) { raise_ChannelType_error(argv[argc-1]); } if (argc != 2) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 2 or more)", argc); } order = NUM2UINT(argv[0]); ary = argv[1]; rm_check_ary_len(ary, (long)(order*order)); kernel = ALLOC_N(double, (long)(order*order)); // Convert the kernel array argument to an array of doubles for (x = 0; x < order*order; x++) { kernel[x] = NUM2DBL(rb_ary_entry(ary, (long)x)); } GetExceptionInfo(&exception); new_image = ConvolveImageChannel(image, channels, order, (double *)kernel, &exception); xfree((double *)kernel); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#copy Purpose: Alias for dup */ VALUE Image_copy(VALUE self) { return rb_funcall(self, rm_ID_dup, 0); } /* Method: Image#initialize_copy Purpose: initialize copy, clone, dup */ VALUE Image_init_copy(VALUE copy, VALUE orig) { Image *image, *new_image; image = rm_check_destroyed(orig); new_image = rm_clone_image(image); UPDATE_DATA_PTR(copy, new_image); return copy; } /* Method: Image#crop(x, y, width, height) Image#crop(gravity, width, height) Image#crop!(x, y, width, height) Image#crop!(gravity, width, height) Purpose: Extract a region of the image defined by width, height, x, y */ VALUE Image_crop(int argc, VALUE *argv, VALUE self) { (void) rm_check_destroyed(self); return cropper(False, argc, argv, self); } VALUE Image_crop_bang(int argc, VALUE *argv, VALUE self) { (void) rm_check_frozen(self); return cropper(True, argc, argv, self); } /* Method: Image#cycle_colormap Purpose: Call CycleColormapImage */ VALUE Image_cycle_colormap(VALUE self, VALUE amount) { Image *image, *new_image; int amt; image = rm_check_destroyed(self); new_image = rm_clone_image(image); amt = NUM2INT(amount); (void) CycleColormapImage(new_image, amt); // No need to check for an error return rm_image_new(new_image); } /* Method: Image#density Purpose: Get the x & y resolutions. Returns: A string in the form "XresxYres" */ VALUE Image_density(VALUE self) { Image *image; char density[128]; image = rm_check_destroyed(self); sprintf(density, "%gx%g", image->x_resolution, image->y_resolution); return rb_str_new2(density); } /* Method: Image#density="XxY" Image#density=aGeometry Purpose: Set the x & y resolutions in the image Notes: The density is a string of the form "XresxYres" or simply "Xres". If the y resolution is not specified, set it equal to the x resolution. This is equivalent to PerlMagick's handling of density. The density can also be a Geometry object. The width attribute is used for the x resolution. The height attribute is used for the y resolution. If the height attribute is missing, the width attribute is used for both. */ VALUE Image_density_eq(VALUE self, VALUE density_arg) { Image *image; char *density; volatile VALUE x_val, y_val; int count; double x_res, y_res; image = rm_check_frozen(self); // Get the Class ID for the Geometry class. if (!Class_Geometry) { Class_Geometry = rb_const_get(Module_Magick, rm_ID_Geometry); } // Geometry object. Width and height attributes are always positive. if (CLASS_OF(density_arg) == Class_Geometry) { x_val = rb_funcall(density_arg, rm_ID_width, 0); x_res = NUM2DBL(x_val); y_val = rb_funcall(density_arg, rm_ID_height, 0); y_res = NUM2DBL(y_val); if (x_res == 0.0) { rb_raise(rb_eArgError, "invalid x resolution: %f", x_res); } image->y_resolution = y_res != 0.0 ? y_res : x_res; image->x_resolution = x_res; } // Convert the argument to a string else { density = StringValuePtr(density_arg); if (!IsGeometry(density)) { rb_raise(rb_eArgError, "invalid density geometry %s", density); } count = sscanf(density, "%lfx%lf", &image->x_resolution, &image->y_resolution); if (count < 2) { image->y_resolution = image->x_resolution; } } return self; } /* Method: Image#depth Purpose: Return the image depth (8 or 16). Note: If all pixels have lower-order bytes equal to higher-order bytes, the depth will be reported as 8 even if the depth field in the Image structure says 16. */ VALUE Image_depth(VALUE self) { Image *image; unsigned long depth = 0; ExceptionInfo exception; image = rm_check_destroyed(self); GetExceptionInfo(&exception); depth = GetImageDepth(image, &exception); CHECK_EXCEPTION() (void) DestroyExceptionInfo(&exception); return INT2FIX(depth); } DEF_ATTR_ACCESSOR(Image, delay, ulong) /* Method: Image#delete_profile(name) Purpose: call ProfileImage Notes: name is the name of the profile to be deleted */ VALUE Image_delete_profile(VALUE self, VALUE name) { Image *image = rm_check_frozen(self); (void) ProfileImage(image, StringValuePtr(name), NULL, 0, MagickTrue); rm_check_image_exception(image, RetainOnError); return self; } /* Method: Image#despeckle Purpose: reduces the speckle noise in an image while preserving the edges of the original image Returns: a new image */ VALUE Image_despeckle(VALUE self) { Image *image, *new_image; ExceptionInfo exception; image = rm_check_destroyed(self); GetExceptionInfo(&exception); new_image = DespeckleImage(image, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#destroy! Purpose: Free all the memory associated with an image */ VALUE Image_destroy_bang(VALUE self) { Image *image; rb_check_frozen(self); Data_Get_Struct(self, Image, image); rm_image_destroy(image); DATA_PTR(self) = NULL; return self; } /* Method: Image#destroyed? Purpose: Returns true if the image has been destroyed, false otherwise */ VALUE Image_destroyed_q(VALUE self) { Image *image; Data_Get_Struct(self, Image, image); return image ? Qfalse : Qtrue; } /* Method: Image#difference Purpose: Call the IsImagesEqual function Returns: An array with 3 values: [0] mean error per pixel [1] normalized mean error [2] normalized maximum error Notes: "other" can be either an Image or an Image */ VALUE Image_difference(VALUE self, VALUE other) { Image *image; Image *image2; volatile VALUE mean, nmean, nmax; image = rm_check_destroyed(self); other = ImageList_cur_image(other); image2 = rm_check_destroyed(other); (void) IsImagesEqual(image, image2); // No need to check for error mean = rb_float_new(image->error.mean_error_per_pixel); nmean = rb_float_new(image->error.normalized_mean_error); nmax = rb_float_new(image->error.normalized_maximum_error); return rb_ary_new3(3, mean, nmean, nmax); } DEF_ATTR_READER(Image, directory, str) /* Method: Image#displace(displacement_map, x_amp, y_amp, x_offset=0, y_offset=0) Image#displace(displacement_map, x_amp, y_amp, gravity, x_offset=0, y_offset=0) Purpose: Implement the -displace option of xMagick's composite command Notes: If y_amp is omitted the default is x_amp. */ VALUE Image_displace(int argc, VALUE *argv, VALUE self) { Image *image, *displacement_map; volatile VALUE dmap; double x_amplitude = 0.0, y_amplitude = 0.0; long x_offset = 0L, y_offset = 0L; image = rm_check_destroyed(self); if (argc < 2) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 2 to 6)", argc); } dmap = ImageList_cur_image(argv[0]); displacement_map = rm_check_destroyed(dmap); if (argc > 3) { get_composite_offsets(argc-3, &argv[3], image, displacement_map, &x_offset, &y_offset); // There must be 3 arguments left argc = 3; } switch (argc) { case 3: y_amplitude = NUM2DBL(argv[2]); x_amplitude = NUM2DBL(argv[1]); break; case 2: x_amplitude = NUM2DBL(argv[1]); y_amplitude = x_amplitude; break; } return special_composite(image, displacement_map, x_amplitude, y_amplitude , x_offset, y_offset, DisplaceCompositeOp); } /* Method: Image#dispatch(x, y, columns, rows, map <, float>) Purpose: Extracts pixel data from the image and returns it as an array of pixels. The "x", "y", "width" and "height" parameters specify the rectangle to be extracted. The "map" parameter reflects the expected ordering of the pixel array. It can be any combination or order of R = red, G = green, B = blue, A = alpha, C = cyan, Y = yellow, M = magenta, K = black, or I = intensity (for grayscale). If the "float" parameter is specified and true, the pixel data is returned as floating-point numbers in the range [0..1]. By default the pixel data is returned as integers in the range [0..QuantumRange]. Returns: an Array Raises: ArgumentError */ VALUE Image_dispatch(int argc, VALUE *argv, VALUE self) { Image *image; long x, y; unsigned long columns, rows, n, npixels; volatile VALUE pixels_ary; StorageType stg_type = QuantumPixel; char *map; long mapL; MagickBooleanType okay; ExceptionInfo exception; union { volatile Quantum *i; volatile double *f; volatile void *v; } pixels; (void) rm_check_destroyed(self); if (argc < 5 || argc > 6) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 5 or 6)", argc); } x = NUM2LONG(argv[0]); y = NUM2LONG(argv[1]); columns = NUM2ULONG(argv[2]); rows = NUM2ULONG(argv[3]); map = rm_str2cstr(argv[4], &mapL); if (argc == 6) { stg_type = RTEST(argv[5]) ? DoublePixel : QuantumPixel; } // Compute the size of the pixel array and allocate the memory. npixels = columns * rows * mapL; pixels.v = stg_type == QuantumPixel ? (void *) ALLOC_N(Quantum, npixels) : (void *) ALLOC_N(double, npixels); // Create the Ruby array for the pixels. Return this even if ExportImagePixels fails. pixels_ary = rb_ary_new(); Data_Get_Struct(self, Image, image); GetExceptionInfo(&exception); okay = ExportImagePixels(image, x, y, columns, rows, map, stg_type, (void *)pixels.v, &exception); if (!okay) { goto exit; } CHECK_EXCEPTION() (void) DestroyExceptionInfo(&exception); // Convert the pixel data to the appropriate Ruby type if (stg_type == QuantumPixel) { for (n = 0; n < npixels; n++) { (void) rb_ary_push(pixels_ary, QUANTUM2NUM(pixels.i[n])); } } else { for (n = 0; n < npixels; n++) { (void) rb_ary_push(pixels_ary, rb_float_new(pixels.f[n])); } } exit: xfree((void *)pixels.v); return pixels_ary; } /* Method: Image#display Purpose: display the image to an X window screen */ VALUE Image_display(VALUE self) { Image *image; Info *info; volatile VALUE info_obj; image = rm_check_destroyed(self); if (image->rows == 0 || image->columns == 0) { rb_raise(rb_eArgError, "invalid image geometry (%lux%lu)", image->rows, image->columns); } info_obj = rm_info_new(); Data_Get_Struct(info_obj, Info, info); (void) DisplayImages(info, image); rm_check_image_exception(image, RetainOnError); return self; } /* Method: Image#dispose Purpose: Return the dispose attribute as a DisposeType enum */ VALUE Image_dispose(VALUE self) { Image *image = rm_check_destroyed(self); return DisposeType_new(image->dispose); } /* Method: Image#dispose= Purpose: Set the dispose attribute */ VALUE Image_dispose_eq(VALUE self, VALUE dispose) { Image *image = rm_check_frozen(self); VALUE_TO_ENUM(dispose, image->dispose, DisposeType); return self; } /* Method: Image#dissolve(overlay, src_percent, dst_percent, x_offset=0, y_offset=0) Image#dissolve(overlay, src_percent, dst_percent, gravity, x_offset=0, y_offset=0) Purpose: Corresponds to the composite -dissolve operation Notes: `percent' can be a number or a string in the form "NN%" The "default" value of dst_percent is -1.0, which tells blend_geometry to leave it out of the geometry string. */ VALUE Image_dissolve(int argc, VALUE *argv, VALUE self) { Image *image, *overlay; double src_percent, dst_percent = -1.0; long x_offset = 0L, y_offset = 0L; volatile VALUE composite, ovly; image = rm_check_destroyed(self); if (argc < 1) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 2 to 6)", argc); } ovly = ImageList_cur_image(argv[0]); overlay = rm_check_destroyed(ovly); if (argc > 3) { get_composite_offsets(argc-3, &argv[3], image, overlay, &x_offset, &y_offset); // There must be 3 arguments left argc = 3; } switch (argc) { case 3: dst_percent = rm_percentage(argv[2]) * 100.0; case 2: src_percent = rm_percentage(argv[1]) * 100.0; break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 2 to 6)", argc); break; } composite = special_composite(image, overlay, src_percent, dst_percent , x_offset, y_offset, DissolveCompositeOp); return composite; } /* * Method: Image#distort(type, points, bestfit=false) * Purpose: Call DistortImage * Notes: points is an Array of Numeric values */ VALUE Image_distort(int argc, VALUE *argv, VALUE self) { #if defined(HAVE_DISTORTIMAGE) Image *image, *new_image; volatile VALUE pts; unsigned long n, npoints; DistortImageMethod distortion_method; double *points; MagickBooleanType bestfit = MagickFalse; ExceptionInfo exception; image = rm_check_destroyed(self); switch (argc) { case 3: bestfit = RTEST(argv[2]); case 2: // Ensure pts is an array pts = rb_Array(argv[1]); VALUE_TO_ENUM(argv[0], distortion_method, DistortImageMethod); break; default: rb_raise(rb_eArgError, "wrong number of arguments (expected 2 or 3, got %d)", argc); break; } npoints = RARRAY_LEN(pts); // Allocate points array from Ruby's memory. If an error occurs Ruby will // be able to clean it up. points = ALLOC_N(double, npoints); for (n = 0; n < npoints; n++) { points[n] = NUM2DBL(rb_ary_entry(pts, n)); } GetExceptionInfo(&exception); new_image = DistortImage(image, distortion_method, npoints, points, bestfit, &exception); xfree(points); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); #else self = self; // defeat "unused parameter" message argv = argv; argc = argc; rm_not_implemented(); return(VALUE)0; #endif } /* * Method: Image#distortion_channel(reconstructed_image, metric[, channel...]) * Purpose: Call GetImageChannelDistortion */ VALUE Image_distortion_channel(int argc, VALUE *argv, VALUE self) { Image *image, *reconstruct; ChannelType channels; ExceptionInfo exception; MetricType metric; volatile VALUE rec; double distortion; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); if (argc > 2) { raise_ChannelType_error(argv[argc-1]); } if (argc < 2) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 2 or more)", argc); } rec = ImageList_cur_image(argv[0]); reconstruct = rm_check_destroyed(rec); VALUE_TO_ENUM(argv[1], metric, MetricType); GetExceptionInfo(&exception); (void) GetImageChannelDistortion(image, reconstruct, channels , metric, &distortion, &exception); CHECK_EXCEPTION() (void) DestroyExceptionInfo(&exception); return rb_float_new(distortion); } /* Method: Image#_dump(aDepth) Purpose: implement marshalling Returns: a string representing the dumped image Notes: uses ImageToBlob - use the MIFF format in the blob since it's the most general */ VALUE Image__dump(VALUE self, VALUE depth) { Image *image; ImageInfo *info; void *blob; size_t length; DumpedImage mi; volatile VALUE str; ExceptionInfo exception; depth = depth; // Suppress "never referenced" message from icc image = rm_check_destroyed(self); info = CloneImageInfo(NULL); if (!info) { rb_raise(rb_eNoMemError, "not enough memory to continue"); } strcpy(info->magick, image->magick); GetExceptionInfo(&exception); blob = ImageToBlob(info, image, &length, &exception); // Free ImageInfo first - error handling may raise an exception (void) DestroyImageInfo(info); CHECK_EXCEPTION() (void) DestroyExceptionInfo(&exception); if (!blob) { rb_raise(rb_eNoMemError, "not enough memory to continue"); } // Create a header for the blob: ID and version // numbers, followed by the length of the magick // string stored as a byte, followed by the // magick string itself. mi.id = DUMPED_IMAGE_ID; mi.mj = DUMPED_IMAGE_MAJOR_VERS; mi.mi = DUMPED_IMAGE_MINOR_VERS; strcpy(mi.magick, image->magick); mi.len = (unsigned char) min((size_t)UCHAR_MAX, strlen(mi.magick)); // Concatenate the blob onto the header & return the result str = rb_str_new((char *)&mi, (long)(mi.len+offsetof(DumpedImage,magick))); return rb_str_cat(str, (char *)blob, (long)length); } /* Method: Image#dup Purpose: Construct a new image object and call initialize_copy */ VALUE Image_dup(VALUE self) { volatile VALUE dup; (void) rm_check_destroyed(self); dup = Data_Wrap_Struct(CLASS_OF(self), NULL, rm_image_destroy, NULL); if (rb_obj_tainted(self)) { (void) rb_obj_taint(dup); } return rb_funcall(dup, rm_ID_initialize_copy, 1, self); } /* Method: Image#each_profile Purpose: Iterate over image profiles Notes: ImageMagick only */ VALUE Image_each_profile(VALUE self) { Image *image; volatile VALUE ary, val; char *name; const StringInfo *profile; image = rm_check_destroyed(self); ResetImageProfileIterator(image); ary = rb_ary_new2(2); name = GetNextImageProfile(image); while (name) { rb_ary_store(ary, 0, rb_str_new2(name)); profile = GetImageProfile(image, name); if (!profile) { rb_ary_store(ary, 1, Qnil); } else { rb_ary_store(ary, 1, rb_str_new((char *)profile->datum, (long)profile->length)); } val = rb_yield(ary); name = GetNextImageProfile(image); } return val; } /* Method: Image#edge(radius=0) Purpose: finds edges in an image. "radius" defines the radius of the convolution filter. Use a radius of 0 and edge selects a suitable radius Returns: a new image */ VALUE Image_edge(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; double radius = 0.0; ExceptionInfo exception; image = rm_check_destroyed(self); switch (argc) { case 1: radius = NUM2DBL(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 or 1)", argc); break; } GetExceptionInfo(&exception); new_image = EdgeImage(image, radius, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Static: effect_image Purpose: call one of the effects methods */ static VALUE effect_image( VALUE self, int argc, VALUE *argv, effector_t effector) { Image *image, *new_image; ExceptionInfo exception; double radius = 0.0, sigma = 1.0; image = rm_check_destroyed(self); switch (argc) { case 2: sigma = NUM2DBL(argv[1]); case 1: radius = NUM2DBL(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 to 2)", argc); break; } if (sigma == 0.0) { rb_raise(rb_eArgError, "sigma must be != 0.0"); } GetExceptionInfo(&exception); new_image = (effector)(image, radius, sigma, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#emboss(radius=0.0, sigma=1.0) Purpose: creates a grayscale image with a three-dimensional effect */ VALUE Image_emboss(int argc, VALUE *argv, VALUE self) { return effect_image(self, argc, argv, EmbossImage); } /* Method: Image#endian Purpose: Return endian option for images that support it. */ VALUE Image_endian(VALUE self) { Image *image = rm_check_destroyed(self); return EndianType_new(image->endian); } /* Method: Image#endian= Purpose: Set endian option for images that support it. */ VALUE Image_endian_eq(VALUE self, VALUE type) { Image *image = rm_check_frozen(self); VALUE_TO_ENUM(type, image->endian, EndianType); return self; } /* Method: Image#enhance Purpose: applies a digital filter that improves the quality of a noisy image */ VALUE Image_enhance(VALUE self) { Image *image, *new_image; ExceptionInfo exception; image = rm_check_destroyed(self); GetExceptionInfo(&exception); new_image = EnhanceImage(image, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#equalize Purpose: applies a histogram equalization to the image */ VALUE Image_equalize(VALUE self) { Image *image, *new_image; ExceptionInfo exception; image = rm_check_destroyed(self); GetExceptionInfo(&exception); new_image = rm_clone_image(image); (void) EqualizeImage(new_image); rm_check_image_exception(new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); return rm_image_new(new_image); } /* Method: Image#equalize_channel Purpose: call EqualizeImageChannel */ VALUE Image_equalize_channel(int argc, VALUE *argv, VALUE self) { #if defined(HAVE_EQUALIZEIMAGECHANNEL) Image *image, *new_image; ExceptionInfo exception; ChannelType channels; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); if (argc > 0) { raise_ChannelType_error(argv[argc-1]); } new_image = rm_clone_image(image); GetExceptionInfo(&exception); (void) EqualizeImageChannel(new_image, channels); rm_check_image_exception(new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); return rm_image_new(new_image); #else argc = argc; argv = argv; self = self; rm_not_implemented(); return (VALUE) 0; #endif } /* Method: Image#erase! Purpose: reset the image to the background color Notes: one of the very few Image methods that do not return a new image. */ VALUE Image_erase_bang(VALUE self) { Image *image = rm_check_frozen(self); (void) SetImageBackgroundColor(image); rm_check_image_exception(image, RetainOnError); return self; } /* Method: Image#excerpt(x, y, width, height) Purpose: lightweight crop Notes: christy says "does not respect the virtual page offset (-page) and does not update the page offset and its more efficient than cropping." */ static VALUE excerpt(int bang, VALUE self, VALUE x, VALUE y, VALUE width, VALUE height) { #if defined(HAVE_EXCERPTIMAGE) Image *image, *new_image; RectangleInfo rect; ExceptionInfo exception; memset(&rect,'\0', sizeof(rect)); rect.x = NUM2LONG(x); rect.y = NUM2LONG(y); rect.width = NUM2ULONG(width); rect.height = NUM2ULONG(height); Data_Get_Struct(self, Image, image); GetExceptionInfo(&exception); new_image = ExcerptImage(image, &rect, &exception); rm_check_exception(&exception, new_image, DestroyOnError); DestroyExceptionInfo(&exception); rm_ensure_result(new_image); if (bang) { UPDATE_DATA_PTR(self, new_image); (void) rm_image_destroy(image); return self; } return rm_image_new(new_image); #else bang = bang; self = self; x = x; y = y; width = width; height = height; rm_not_implemented(); return(VALUE)0; #endif } VALUE Image_excerpt(VALUE self, VALUE x, VALUE y, VALUE width, VALUE height) { (void) rm_check_destroyed(self); return excerpt(False, self, x, y, width, height); } VALUE Image_excerpt_bang(VALUE self, VALUE x, VALUE y, VALUE width, VALUE height) { (void) rm_check_frozen(self); return excerpt(True, self, x, y, width, height); } /* Method: Image#export_pixels(x=0, y=0, cols=self.columns, rows=self.rows, map="RGB") Purpose: extract image pixels in the form of an array */ VALUE Image_export_pixels(int argc, VALUE *argv, VALUE self) { Image *image; long x_off = 0L, y_off = 0L; unsigned long cols, rows; long n, npixels; unsigned int okay; char *map = "RGB"; volatile Quantum *pixels; volatile VALUE ary; ExceptionInfo exception; image = rm_check_destroyed(self); cols = image->columns; rows = image->rows; switch (argc) { case 5: map = StringValuePtr(argv[4]); case 4: rows = NUM2ULONG(argv[3]); case 3: cols = NUM2ULONG(argv[2]); case 2: y_off = NUM2LONG(argv[1]); case 1: x_off = NUM2LONG(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 1 to 5)", argc); break; } if ( x_off < 0 || (unsigned long)x_off > image->columns || y_off < 0 || (unsigned long)y_off > image->rows || cols == 0 || rows == 0) { rb_raise(rb_eArgError, "invalid extract geometry"); } npixels = (long)(cols * rows * strlen(map)); pixels = ALLOC_N(Quantum, npixels); if (!pixels) // app recovered from exception { return rb_ary_new2(0L); } GetExceptionInfo(&exception); okay = ExportImagePixels(image, x_off, y_off, cols, rows, map, QuantumPixel, (void *)pixels, &exception); if (!okay) { xfree((unsigned int *)pixels); CHECK_EXCEPTION() // Should never get here... rm_magick_error("ExportImagePixels failed with no explanation.", NULL); } (void) DestroyExceptionInfo(&exception); ary = rb_ary_new2(npixels); for (n = 0; n < npixels; n++) { (void) rb_ary_push(ary, QUANTUM2NUM(pixels[n])); } xfree((unsigned int *)pixels); return ary; } /* Method: Image#extent(width, height, x=0, y=0) Purpose: Call ExtentImage */ VALUE Image_extent(int argc, VALUE *argv, VALUE self) { #if defined(HAVE_EXTENTIMAGE) Image *image, *new_image; RectangleInfo geometry; long height, width; ExceptionInfo exception; (void) rm_check_destroyed(self); if (argc < 2 || argc > 4) { rb_raise(rb_eArgError, "wrong number of arguments (expected 2 to 4, got %d)", argc); } geometry.y = geometry.x = 0L; switch (argc) { case 4: geometry.y = NUM2LONG(argv[3]); case 3: geometry.x = NUM2LONG(argv[2]); default: geometry.height = height = NUM2LONG(argv[1]); geometry.width = width = NUM2LONG(argv[0]); break; } // Use the signed versions of these two values to test for < 0 if (height <= 0L || width <= 0L) { if (geometry.x == 0 && geometry.y == 0) { rb_raise(rb_eArgError, "invalid extent geometry %ldx%ld", width, height); } else { rb_raise(rb_eArgError, "invalid extent geometry %ldx%ld+%ld+%ld" , width, height, geometry.x, geometry.y); } } Data_Get_Struct(self, Image, image); GetExceptionInfo(&exception); new_image = ExtentImage(image, &geometry, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); #else argc = argc; argv = argv; self = self; rm_not_implemented(); return(VALUE)0; #endif } /* Method: Image#export_pixels_to_str(x=0, y=0, cols=self.columns, rows=self.rows, map="RGB", type=Magick::CharPixel) Purpose: extract image pixels to a Ruby string */ VALUE Image_export_pixels_to_str(int argc, VALUE *argv, VALUE self) { Image *image; long x_off = 0L, y_off = 0L; unsigned long cols, rows; unsigned long npixels; size_t sz; unsigned int okay; char *map = "RGB"; StorageType type = CharPixel; volatile VALUE string; char *str; ExceptionInfo exception; image = rm_check_destroyed(self); cols = image->columns; rows = image->rows; switch (argc) { case 6: VALUE_TO_ENUM(argv[5], type, StorageType); case 5: map = StringValuePtr(argv[4]); case 4: rows = NUM2ULONG(argv[3]); case 3: cols = NUM2ULONG(argv[2]); case 2: y_off = NUM2LONG(argv[1]); case 1: x_off = NUM2LONG(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 1 to 6)", argc); break; } if ( x_off < 0 || (unsigned long)x_off > image->columns || y_off < 0 || (unsigned long)y_off > image->rows || cols == 0 || rows == 0) { rb_raise(rb_eArgError, "invalid extract geometry"); } npixels = cols * rows * strlen(map); switch (type) { case CharPixel: sz = sizeof(unsigned char); break; case ShortPixel: sz = sizeof(unsigned short); break; case DoublePixel: sz = sizeof(double); break; case FloatPixel: sz = sizeof(float); break; case IntegerPixel: sz = sizeof(unsigned int); break; case LongPixel: sz = sizeof(unsigned long); break; case QuantumPixel: sz = sizeof(Quantum); break; case UndefinedPixel: default: rb_raise(rb_eArgError, "undefined storage type"); break; } // Allocate a string long enough to hold the exported pixel data. // Get a pointer to the buffer. string = rb_str_new2(""); (void) rb_str_resize(string, (long)(sz * npixels)); str = StringValuePtr(string); GetExceptionInfo(&exception); okay = ExportImagePixels(image, x_off, y_off, cols, rows, map, type, (void *)str, &exception); if (!okay) { // Let GC have the string buffer. (void) rb_str_resize(string, 0); CHECK_EXCEPTION() // Should never get here... rm_magick_error("ExportImagePixels failed with no explanation.", NULL); } (void) DestroyExceptionInfo(&exception); return string; } /* Method: Image#extract_info, extract_info= Purpose: the extract_info attribute accessors */ VALUE Image_extract_info(VALUE self) { Image *image = rm_check_destroyed(self); return Rectangle_from_RectangleInfo(&image->extract_info); } VALUE Image_extract_info_eq(VALUE self, VALUE rect) { Image *image = rm_check_frozen(self); Rectangle_to_RectangleInfo(&image->extract_info, rect); return self; } DEF_ATTR_READER(Image, filename, str) /* Method: Image#filesize Purpose: Return the image filesize */ VALUE Image_filesize(VALUE self) { Image *image = rm_check_destroyed(self); return INT2FIX(GetBlobSize(image)); } /* Method: Image#filter, filter= Purpose: Get/set filter type */ VALUE Image_filter(VALUE self) { Image *image = rm_check_destroyed(self); return FilterTypes_new(image->filter); } VALUE Image_filter_eq(VALUE self, VALUE filter) { Image *image = rm_check_frozen(self); VALUE_TO_ENUM(filter, image->filter, FilterTypes); return self; } /* * Method: Image#find_similar_region(target, x=0, y=0) * Purpose: Search for a region in the image that is "similar" to the * target image. */ VALUE Image_find_similar_region(int argc, VALUE *argv, VALUE self) { Image *image, *target; volatile VALUE region, targ; long x = 0L, y = 0L; ExceptionInfo exception; unsigned int okay; image = rm_check_destroyed(self); switch (argc) { case 3: y = NUM2LONG(argv[2]); case 2: x = NUM2LONG(argv[1]); case 1: targ = ImageList_cur_image(argv[0]); target = rm_check_destroyed(targ); break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 1 to 3)", argc); break; } GetExceptionInfo(&exception); okay = IsImageSimilar(image, target, &x, &y, &exception); CHECK_EXCEPTION(); (void) DestroyExceptionInfo(&exception); if (!okay) { return Qnil; } region = rb_ary_new2(2); rb_ary_store(region, 0L, LONG2NUM(x)); rb_ary_store(region, 1L, LONG2NUM(y)); return region; } /* Method: Image#flip Image#flip! Purpose: creates a vertical mirror image by reflecting the pixels around the central x-axis Returns: flip: a new, flipped image flip!: self, flipped */ static VALUE flipflop(int bang, VALUE self, flipper_t flipflopper) { Image *image, *new_image; ExceptionInfo exception; Data_Get_Struct(self, Image, image); GetExceptionInfo(&exception); new_image = (flipflopper)(image, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); if (bang) { UPDATE_DATA_PTR(self, new_image); (void) rm_image_destroy(image); return self; } return rm_image_new(new_image); } VALUE Image_flip(VALUE self) { (void) rm_check_destroyed(self); return flipflop(False, self, FlipImage); } VALUE Image_flip_bang(VALUE self) { (void) rm_check_frozen(self); return flipflop(True, self, FlipImage); } /* Method: Image#flop Image#flop! Purpose: creates a horizontal mirror image by reflecting the pixels around the central y-axis Returns: flop: a new, flopped image flop!: self, flopped */ VALUE Image_flop(VALUE self) { (void) rm_check_destroyed(self); return flipflop(False, self, FlopImage); } VALUE Image_flop_bang(VALUE self) { (void) rm_check_frozen(self); return flipflop(True, self, FlopImage); } /* Method: Image#format Purpose: Return the image encoding format Note: This is what PerlMagick does for "format" */ VALUE Image_format(VALUE self) { Image *image; const MagickInfo *magick_info; ExceptionInfo exception; image = rm_check_destroyed(self); if (*image->magick) { // Deliberately ignore the exception info! GetExceptionInfo(&exception); magick_info = GetMagickInfo(image->magick, &exception); (void) DestroyExceptionInfo(&exception); return magick_info ? rb_str_new2(magick_info->name) : Qnil; } return Qnil; } /* Method: Image#format= Purpose: Set the image encoding format */ VALUE Image_format_eq(VALUE self, VALUE magick) { Image *image; const MagickInfo *m; char *mgk; ExceptionInfo exception; image = rm_check_frozen(self); GetExceptionInfo(&exception); mgk = StringValuePtr(magick); m = GetMagickInfo(mgk, &exception); CHECK_EXCEPTION() (void) DestroyExceptionInfo(&exception); if (!m) { rb_raise(rb_eArgError, "unknown format: %s", mgk); } strncpy(image->magick, m->name, MaxTextExtent-1); return self; } /* Method: Image#frame(>>>>>>) Purpose: adds a simulated three-dimensional border around the image. "Width" and "height" specify the width and height of the frame. The "x" and "y" arguments position the image within the frame. If the image is supposed to be centered in the frame, x and y should be 1/2 the width and height of the frame. (I.e. if the frame is 50 pixels high and 50 pixels wide, x and y should both be 25)."Inner_bevel" and "outer_bevel" indicate the width of the inner and outer shadows of the frame. They should be much smaller than the frame and cannot be > 1/2 the frame width or height of the image. Default: All arguments are optional. The defaults are the same as they are in Magick++: width: image-columns+25*2 height: image-rows+25*2 x: 25 y: 25 inner: 6 outer: 6 color: image matte_color (which defaults to #bdbdbd, whatever self.matte_color was set to when the image was created, or whatever image.matte_color is currently set to) Returns: a new image. */ VALUE Image_frame(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; ExceptionInfo exception; FrameInfo frame_info; image = rm_check_destroyed(self); frame_info.width = image->columns + 50; frame_info.height = image->rows + 50; frame_info.x = 25; frame_info.y = 25; frame_info.inner_bevel = 6; frame_info.outer_bevel = 6; switch (argc) { case 7: Color_to_PixelPacket(&image->matte_color, argv[6]); case 6: frame_info.outer_bevel = NUM2LONG(argv[5]); case 5: frame_info.inner_bevel = NUM2LONG(argv[4]); case 4: frame_info.y = NUM2LONG(argv[3]); case 3: frame_info.x = NUM2LONG(argv[2]); case 2: frame_info.height = image->rows + 2*NUM2LONG(argv[1]); case 1: frame_info.width = image->columns + 2*NUM2LONG(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 to 7)", argc); break; } GetExceptionInfo(&exception); new_image = FrameImage(image, &frame_info, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image.from_blob(blob) <{ parm block }> Purpose: Call BlobToImage Notes: The blob is a String */ VALUE Image_from_blob(VALUE class, VALUE blob_arg) { Image *images; Info *info; volatile VALUE info_obj; ExceptionInfo exception; void *blob; long length; class = class; // defeat gcc message blob_arg = blob_arg; // defeat gcc message blob = (void *) rm_str2cstr(blob_arg, &length); // Get a new Info object - run the parm block if supplied info_obj = rm_info_new(); Data_Get_Struct(info_obj, Info, info); GetExceptionInfo(&exception); images = BlobToImage(info, blob, (size_t)length, &exception); rm_check_exception(&exception, images, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(images); return array_from_images(images); } DEF_ATTR_READER(Image, fuzz, dbl) /* Method: Image#fuzz=number Image#fuzz=NN% Notes: See Info#fuzz. */ VALUE Image_fuzz_eq(VALUE self, VALUE fuzz) { Image *image = rm_check_frozen(self); image->fuzz = rm_fuzz_to_dbl(fuzz); return self; } DEF_ATTR_ACCESSOR(Image, gamma, dbl) /* * Method: Image#gamma_channel(gamma, channel=AllChannels) * Returns a new image */ VALUE Image_gamma_channel(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; ChannelType channels; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); // There must be exactly one remaining argument. if (argc == 0) { rb_raise(rb_eArgError, "missing gamma argument"); } else if (argc > 1) { raise_ChannelType_error(argv[argc-1]); } new_image = rm_clone_image(image); (void)GammaImageChannel(new_image, channels, NUM2DBL(argv[0])); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image#gamma_correct(red_gamma<, green_gamma<, blue_gamma>>>) Purpose: gamma-correct an image Notes: At least red_gamma must be specified. If one or more levels are omitted, the last specified number is used as the default. For backward compatibility accept a 4th argument but ignore it. */ VALUE Image_gamma_correct(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; double red_gamma, green_gamma, blue_gamma; char gamma[50]; image = rm_check_destroyed(self); switch (argc) { case 1: red_gamma = NUM2DBL(argv[0]); // Can't have all 4 gamma values == 1.0. Also, very small values // cause ImageMagick to segv. if (red_gamma == 1.0 || fabs(red_gamma) < 0.003) { rb_raise(rb_eArgError, "invalid gamma value (%f)", red_gamma); } green_gamma = blue_gamma = red_gamma; break; case 2: red_gamma = NUM2DBL(argv[0]); green_gamma = NUM2DBL(argv[1]); blue_gamma = green_gamma; break; case 3: case 4: red_gamma = NUM2DBL(argv[0]); green_gamma = NUM2DBL(argv[1]); blue_gamma = NUM2DBL(argv[2]); break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 1 to 3)", argc); break; } sprintf(gamma, "%f,%f,%f", red_gamma, green_gamma, blue_gamma); new_image = rm_clone_image(image); (void) GammaImage(new_image, gamma); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image#gaussian_blur(radius, sigma) Purpose: blur the image Returns: a new image */ VALUE Image_gaussian_blur(int argc, VALUE *argv, VALUE self) { return effect_image(self, argc, argv, GaussianBlurImage); } /* * Method: Image#gaussian_blur_channel(radius=0, sigma=1, channel=AllChannels) * Notes: new in IM 6.0.0 */ VALUE Image_gaussian_blur_channel(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; ChannelType channels; ExceptionInfo exception; double radius = 0.0, sigma = 1.0; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); // There can be 0, 1, or 2 remaining arguments. switch (argc) { case 2: sigma = NUM2DBL(argv[1]); /* Fall thru */ case 1: radius = NUM2DBL(argv[0]); /* Fall thru */ case 0: break; default: raise_ChannelType_error(argv[argc-1]); } GetExceptionInfo(&exception); new_image = GaussianBlurImageChannel(image, channels, radius, sigma, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); return rm_image_new(new_image); } /* Method: Image#geometry, geometry= Purpose: the preferred size of the image when encoding */ DEF_ATTR_READER(Image, geometry, str) VALUE Image_geometry_eq( VALUE self, VALUE geometry) { Image *image; volatile VALUE geom_str; char *geom; image = rm_check_frozen(self); if (geometry == Qnil) { magick_free(image->geometry); image->geometry = NULL; return self; } geom_str = rb_funcall(geometry, rm_ID_to_s, 0); geom = StringValuePtr(geom_str); if (!IsGeometry(geom)) { rb_raise(rb_eTypeError, "invalid geometry: %s", geom); } magick_clone_string(&image->geometry, geom); return self; } /* Method: Image#get_pixels(x, y, columns. rows) Purpose: Call AcquireImagePixels Returns: An array of Magick::Pixel objects corresponding to the pixels in the rectangle defined by the geometry parameters. Note: This is the complement of store_pixels. Notice that the return value is an array object even when only one pixel is returned. store_pixels calls GetImagePixels, then SyncImage */ VALUE Image_get_pixels( VALUE self, VALUE x_arg, VALUE y_arg, VALUE cols_arg, VALUE rows_arg) { Image *image; PixelPacket *pixels; ExceptionInfo exception; long x, y; unsigned long columns, rows; long size, n; VALUE pixel_ary; image = rm_check_destroyed(self); x = NUM2LONG(x_arg); y = NUM2LONG(y_arg); columns = NUM2ULONG(cols_arg); rows = NUM2ULONG(rows_arg); if ((x+columns) > image->columns || (y+rows) > image->rows) { rb_raise(rb_eRangeError, "geometry (%lux%lu%+ld%+ld) exceeds image bounds" , columns, rows, x, y); } // Cast AcquireImagePixels to get rid of the const qualifier. We're not going // to change the pixels but I don't want to make "pixels" const. GetExceptionInfo(&exception); pixels = (PixelPacket *)AcquireImagePixels(image, x, y, columns, rows, &exception); CHECK_EXCEPTION() (void) DestroyExceptionInfo(&exception); // If the function failed, return a 0-length array. if (!pixels) { return rb_ary_new(); } // Allocate an array big enough to contain the PixelPackets. size = (long)(columns * rows); pixel_ary = rb_ary_new2(size); // Convert the PixelPackets to Magick::Pixel objects for (n = 0; n < size; n++) { rb_ary_store(pixel_ary, n, Pixel_from_PixelPacket(&pixels[n])); } return pixel_ary; } static VALUE has_attribute(VALUE self, MagickBooleanType (attr_test)(const Image *, ExceptionInfo *)) { Image *image; ExceptionInfo exception; MagickBooleanType r; image = rm_check_destroyed(self); GetExceptionInfo(&exception); r = (attr_test)(image, &exception); CHECK_EXCEPTION() return r ? Qtrue : Qfalse; } /* Method: Image#gray? Purpose: return true if all the pixels in the image have the same red, green, and blue intensities. */ VALUE Image_gray_q(VALUE self) { return has_attribute(self, IsGrayImage); } /* Method: Image#histogram? Purpose: return true if has 1024 unique colors or less. */ VALUE Image_histogram_q(VALUE self) { #if defined(HAVE_ISHISTOGRAMIMAGE) return has_attribute(self, IsHistogramImage); #else self = self; rm_not_implemented(); return(VALUE)0; #endif } /* Method: Image#implode(amount=0.50) Purpose: implode the image by the specified percentage Returns: a new image */ VALUE Image_implode(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; double amount = 0.50; ExceptionInfo exception; switch (argc) { case 1: amount = NUM2DBL(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 or 1)", argc); } image = rm_check_destroyed(self); GetExceptionInfo(&exception); new_image = ImplodeImage(image, amount, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#import_pixels Purpose: store image pixel data from an array Notes: See Image#export_pixels */ VALUE Image_import_pixels(int argc, VALUE *argv, VALUE self) { Image *image; long x_off, y_off; unsigned long cols, rows; unsigned long n, npixels; long buffer_l; char *map; volatile VALUE pixel_arg, pixel_ary; StorageType stg_type = CharPixel; size_t type_sz, map_l; volatile Quantum *pixels = NULL; volatile double *fpixels = NULL; volatile void *buffer; unsigned int okay; image = rm_check_frozen(self); switch (argc) { case 7: VALUE_TO_ENUM(argv[6], stg_type, StorageType); case 6: x_off = NUM2LONG(argv[0]); y_off = NUM2LONG(argv[1]); cols = NUM2ULONG(argv[2]); rows = NUM2ULONG(argv[3]); map = StringValuePtr(argv[4]); pixel_arg = argv[5]; break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 6 or 7)", argc); break; } if (x_off < 0 || y_off < 0 || cols <= 0 || rows <= 0) { rb_raise(rb_eArgError, "invalid import geometry"); } map_l = strlen(map); npixels = cols * rows * map_l; // Assume that any object that responds to :to_str is a string buffer containing // binary pixel data. if (rb_respond_to(pixel_arg, rb_intern("to_str"))) { buffer = (void *)rm_str2cstr(pixel_arg, &buffer_l); switch (stg_type) { case CharPixel: type_sz = 1; break; case ShortPixel: type_sz = sizeof(unsigned short); break; case IntegerPixel: type_sz = sizeof(unsigned int); break; case LongPixel: type_sz = sizeof(unsigned long); break; case DoublePixel: type_sz = sizeof(double); break; case FloatPixel: type_sz = sizeof(float); break; case QuantumPixel: type_sz = sizeof(Quantum); break; default: rb_raise(rb_eArgError, "unsupported storage type %s", StorageType_name(stg_type)); break; } if (buffer_l % type_sz != 0) { rb_raise(rb_eArgError, "pixel buffer must be an exact multiple of the storage type size"); } if ((buffer_l / type_sz) % map_l != 0) { rb_raise(rb_eArgError, "pixel buffer must contain an exact multiple of the map length"); } if ((unsigned long)(buffer_l / type_sz) < npixels) { rb_raise(rb_eArgError, "pixel buffer too small (need %lu channel values, got %ld)" , npixels, buffer_l/type_sz); } } // Otherwise convert the argument to an array and convert the array elements // to binary pixel data. else { // rb_Array converts an object that is not an array to an array if possible, // and raises TypeError if it can't. It usually is possible. pixel_ary = rb_Array(pixel_arg); if (RARRAY_LEN(pixel_ary) % map_l != 0) { rb_raise(rb_eArgError, "pixel array must contain an exact multiple of the map length"); } if ((unsigned long)RARRAY_LEN(pixel_ary) < npixels) { rb_raise(rb_eArgError, "pixel array too small (need %lu elements, got %ld)" , npixels, RARRAY_LEN(pixel_ary)); } if (stg_type == DoublePixel || stg_type == FloatPixel) { // Get an array for double pixels. Use Ruby's memory so GC will clean up after // us in case of an exception. fpixels = ALLOC_N(double, npixels); for (n = 0; n < npixels; n++) { fpixels[n] = NUM2DBL(rb_ary_entry(pixel_ary, n)); } buffer = (void *) fpixels; stg_type = DoublePixel; } else { // Get array for Quantum pixels. Use Ruby's memory so GC will clean up after us // in case of an exception. pixels = ALLOC_N(Quantum, npixels); for (n = 0; n < npixels; n++) { volatile VALUE p = rb_ary_entry(pixel_ary, n); pixels[n] = NUM2QUANTUM(p); } buffer = (void *) pixels; stg_type = QuantumPixel; } } okay = ImportImagePixels(image, x_off, y_off, cols, rows, map, stg_type, (const void *)buffer); // Free pixel array before checking for errors. if (pixels) { xfree((void *)pixels); } if (fpixels) { xfree((void *)fpixels); } if (!okay) { rm_check_image_exception(image, RetainOnError); // Shouldn't get here... rm_magick_error("ImportImagePixels failed with no explanation.", NULL); } return self; } /* Method: Image#inspect Purpose: Overrides Object#inspect - returns a string description of the image. Returns: the string Notes: this is essentially the DescribeImage except the description is built in a char buffer instead of being written to a file. */ static void build_inspect_string(Image *image, char *buffer, size_t len) { unsigned long quantum_depth; int x = 0; // # bytes used in buffer // Print magick filename if different from current filename. if (*image->magick_filename != '\0' && strcmp(image->magick_filename, image->filename) != 0) { x += sprintf(buffer+x, "%.1024s=>", image->magick_filename); } // Print current filename. x += sprintf(buffer+x, "%.1024s", image->filename); // Print scene number. if ((GetPreviousImageInList(image) != NULL) && (GetNextImageInList(image) != NULL) && image->scene > 0) { x += sprintf(buffer+x, "[%lu]", image->scene); } // Print format x += sprintf(buffer+x, " %s ", image->magick); // Print magick columnsXrows if different from current. if (image->magick_columns != 0 || image->magick_rows != 0) { if (image->magick_columns != image->columns || image->magick_rows != image->rows) { x += sprintf(buffer+x, "%lux%lu=>", image->magick_columns, image->magick_rows); } } x += sprintf(buffer+x, "%lux%lu ", image->columns, image->rows); // Print current columnsXrows if ( image->page.width != 0 || image->page.height != 0 || image->page.x != 0 || image->page.y != 0) { x += sprintf(buffer+x, "%lux%lu%+ld%+ld ", image->page.width, image->page.height , image->page.x, image->page.y); } if (image->storage_class == DirectClass) { x += sprintf(buffer+x, "DirectClass "); if (image->total_colors != 0) { if (image->total_colors >= (unsigned long)(1 << 24)) { x += sprintf(buffer+x, "%lumc ", image->total_colors/1024/1024); } else { if (image->total_colors >= (unsigned long)(1 << 16)) { x += sprintf(buffer+x, "%lukc ", image->total_colors/1024); } else { x += sprintf(buffer+x, "%luc ", image->total_colors); } } } } else { // Cast `image->colors' to long to suppress gcc warnings when // building with GM. GM defines that field as an unsigned int. if (image->total_colors <= image->colors) { x += sprintf(buffer+x, "PseudoClass %ldc ", (long) image->colors); } else { x += sprintf(buffer+x, "PseudoClass %lu=>%ldc ", image->total_colors , (long)image->colors); if (image->error.mean_error_per_pixel != 0.0) { x += sprintf(buffer+x, "%ld/%.6f/%.6fdb " , (long) (image->error.mean_error_per_pixel+0.5) , image->error.normalized_mean_error , image->error.normalized_maximum_error); } } } // Print bit depth quantum_depth = GetImageQuantumDepth(image, MagickTrue); x += sprintf(buffer+x, "%lu-bit", quantum_depth); // Print blob info if appropriate. if (SizeBlob(image) != 0) { if (SizeBlob(image) >= (1 << 24)) { x += sprintf(buffer+x, " %lumb", (unsigned long) (SizeBlob(image)/1024/1024)); } else if (SizeBlob(image) >= 1024) { x += sprintf(buffer+x, " %lukb", (unsigned long) (SizeBlob(image)/1024)); } else { x += sprintf(buffer+x, " %lub", (unsigned long) SizeBlob(image)); } } assert(x < (int)(len-1)); buffer[x] = '\0'; return; } VALUE Image_inspect(VALUE self) { Image *image; char buffer[MaxTextExtent]; // image description buffer Data_Get_Struct(self, Image, image); if (!image) { return rb_str_new2("#"); } build_inspect_string(image, buffer, sizeof(buffer)); return rb_str_new2(buffer); } /* Method: Image#interlace Purpose: get the interlace attribute */ VALUE Image_interlace(VALUE self) { Image *image = rm_check_destroyed(self); return InterlaceType_new(image->interlace); } /* Method: Image#interlace= Purpose: set the interlace attribute */ VALUE Image_interlace_eq(VALUE self, VALUE interlace) { Image *image = rm_check_frozen(self); VALUE_TO_ENUM(interlace, image->interlace, InterlaceType); return self; } /* Method: Image#iptc_profile Purpose: Return the IPTC profile as a String. Notes: If there is no profile, returns Qnil */ VALUE Image_iptc_profile(VALUE self) { Image *image; const StringInfo *profile; image = rm_check_destroyed(self); profile = GetImageProfile(image, "iptc"); rm_check_image_exception(image, RetainOnError); if (!profile) { return Qnil; } return rb_str_new((char *)profile->datum, (long)profile->length); } /* Method: Image#iptc_profile=(String) Purpose: Set the IPTC profile. The argument is a string. Notes: Pass nil to remove any existing profile */ VALUE Image_iptc_profile_eq(VALUE self, VALUE profile) { (void) Image_delete_profile(self, rb_str_new2("IPTC")); if (profile != Qnil) { (void) set_profile(self, "IPTC", profile); } return self; } /* These are undocumented methods. The writer is called only by Image#iterations=. The reader is only used by the unit tests! */ DEF_ATTR_ACCESSOR(Image, iterations, int) /* Method: Image#level(black_point=0.0, white_point=QuantumRange, gamma=1.0) Purpose: adjusts the levels of an image given these points: black, mid, and white Notes: all three arguments are optional */ VALUE Image_level2(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; double black_point = 0.0, gamma = 1.0, white_point = (double)QuantumRange; char level[50]; image = rm_check_destroyed(self); switch (argc) { case 0: // take all the defaults break; case 1: black_point = NUM2DBL(argv[0]); white_point = QuantumRange - black_point; break; case 2: black_point = NUM2DBL(argv[0]); white_point = NUM2DBL(argv[1]); break; case 3: black_point = NUM2DBL(argv[0]); white_point = NUM2DBL(argv[1]); gamma = NUM2DBL(argv[2]); break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 to 3)", argc); break; } new_image = rm_clone_image(image); sprintf(level, "%gx%g+%g", black_point, white_point, gamma); (void) LevelImage(new_image, level); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image#level_channel(aChannelType, black=0, white=QuantumRange, gamma=1.0) Purpose: similar to Image#level but applies to a single channel only Notes: black and white are 0-QuantumRange, gamma is 0-10. */ VALUE Image_level_channel(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; double black_point = 0.0, gamma = 1.0, white_point = (double)QuantumRange; ChannelType channel; image = rm_check_destroyed(self); switch (argc) { case 1: // take all the defaults break; case 2: black_point = NUM2DBL(argv[1]); white_point = QuantumRange - black_point; break; case 3: black_point = NUM2DBL(argv[1]); white_point = NUM2DBL(argv[2]); break; case 4: black_point = NUM2DBL(argv[1]); white_point = NUM2DBL(argv[2]); gamma = NUM2DBL(argv[3]); break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 1 to 4)", argc); break; } VALUE_TO_ENUM(argv[0], channel, ChannelType); new_image = rm_clone_image(image); (void) LevelImageChannel(new_image, channel, black_point, white_point, gamma); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image_linear_stretch(black_point <, white_point>) Purpose: Call LinearStretchImage Notes: The default for white_point is #pixels-black_point. See Image_contrast_stretch_channel. */ VALUE Image_linear_stretch(int argc, VALUE *argv, VALUE self) { #if defined(HAVE_LINEARSTRETCHIMAGE) Image *image, *new_image; double black_point, white_point; image = rm_check_destroyed(self); get_black_white_point(image, argc, argv, &black_point, &white_point); new_image = rm_clone_image(image); (void) LinearStretchImage(new_image, black_point, white_point); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); #else argc = argc; // defeat "unused parameter" messages argv = argv; self = self; rm_not_implemented(); return(VALUE)0; #endif } /* Method: Image._load Purpose: implement marshalling Notes: calls BlobToImage - see Image#_dump */ VALUE Image__load(VALUE class, VALUE str) { Image *image; ImageInfo *info; DumpedImage mi; ExceptionInfo exception; char *blob; long length; class = class; // Suppress "never referenced" message from icc info = CloneImageInfo(NULL); blob = rm_str2cstr(str, &length); // Must be as least as big as the 1st 4 fields in DumpedImage if (length <= (long)(sizeof(DumpedImage)-MaxTextExtent)) { rb_raise(rb_eTypeError, "image is invalid or corrupted (too short)"); } // Retrieve & validate the image format from the header portion mi.id = ((DumpedImage *)blob)->id; if (mi.id != DUMPED_IMAGE_ID) { rb_raise(rb_eTypeError, "image is invalid or corrupted (invalid header)"); } mi.mj = ((DumpedImage *)blob)->mj; mi.mi = ((DumpedImage *)blob)->mi; if ( mi.mj != DUMPED_IMAGE_MAJOR_VERS || mi.mi > DUMPED_IMAGE_MINOR_VERS) { rb_raise(rb_eTypeError, "incompatible image format (can't be read)\n" "\tformat version %d.%d required; %d.%d given" , DUMPED_IMAGE_MAJOR_VERS, DUMPED_IMAGE_MINOR_VERS , mi.mj, mi.mi); } mi.len = ((DumpedImage *)blob)->len; // Must be bigger than the header if (length <= (long)(mi.len+sizeof(DumpedImage)-MaxTextExtent)) { rb_raise(rb_eTypeError, "image is invalid or corrupted (too short)"); } memcpy(info->magick, ((DumpedImage *)blob)->magick, mi.len); info->magick[mi.len] = '\0'; GetExceptionInfo(&exception); blob += offsetof(DumpedImage,magick) + mi.len; length -= offsetof(DumpedImage,magick) + mi.len; image = BlobToImage(info, blob, (size_t) length, &exception); (void) DestroyImageInfo(info); rm_check_exception(&exception, image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(image); return rm_image_new(image); } /* Method: Image#magnify Image#magnify! Purpose: Scales an image proportionally to twice its size Returns: magnify: a new image 2x the size of the input image magnify!: self, 2x */ static VALUE magnify(int bang, VALUE self, magnifier_t magnifier) { Image *image; Image *new_image; ExceptionInfo exception; Data_Get_Struct(self, Image, image); GetExceptionInfo(&exception); new_image = (magnifier)(image, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); if (bang) { UPDATE_DATA_PTR(self, new_image); (void) rm_image_destroy(image); return self; } return rm_image_new(new_image); } VALUE Image_magnify(VALUE self) { (void) rm_check_destroyed(self); return magnify(False, self, MagnifyImage); } VALUE Image_magnify_bang(VALUE self) { (void) rm_check_frozen(self); return magnify(True, self, MagnifyImage); } /* Method: Image#map(map_image, dither=false) Purpose: Call MapImage Returns: a new image */ VALUE Image_map(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; Image *map; volatile VALUE map_obj, map_arg; unsigned int dither = MagickFalse; image = rm_check_destroyed(self); switch (argc) { case 2: dither = RTEST(argv[1]); case 1: map_arg = argv[0]; break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 1 or 2)", argc); break; } new_image = rm_clone_image(image); map_obj = ImageList_cur_image(map_arg); map = rm_check_destroyed(map_obj); (void) MapImage(new_image, map, dither); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image#mask Purpose: Return the image's clip mask, or nil if it doesn't have a clip mask. Notes: Distinguish from Image#clip_mask */ VALUE Image_mask(VALUE self) { Image *image, *mask; ExceptionInfo exception; image = rm_check_destroyed(self); GetExceptionInfo(&exception); // The returned clip mask is a clone, ours to keep. mask = GetImageClipMask(image, &exception); rm_check_exception(&exception, mask, DestroyOnError); (void) DestroyExceptionInfo(&exception); return mask ? rm_image_new(mask) : Qnil; } /* Method: Image#mask=(mask-image) Purpose: associates a clip mask with the image Notes: pass "nil" for the mask-image to remove the current clip mask. If the clip mask is not the same size as the target image, resizes the clip mask to match the target. Notes: Distinguish from Image#clip_mask= */ VALUE Image_mask_eq(VALUE self, VALUE mask) { Image *image, *mask_image, *resized_image; Image *clip_mask; long x, y; PixelPacket *q; ExceptionInfo exception; image = rm_check_frozen(self); if (mask != Qnil) { mask = ImageList_cur_image(mask); mask_image = rm_check_destroyed(mask); clip_mask = rm_clone_image(mask_image); // Resize if necessary if (clip_mask->columns != image->columns || clip_mask->rows != image->rows) { GetExceptionInfo(&exception); resized_image = ResizeImage(clip_mask, image->columns, image->rows , UndefinedFilter, 0.0, &exception); rm_check_exception(&exception, resized_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(resized_image); (void) DestroyImage(clip_mask); clip_mask = resized_image; } // The following section is copied from mogrify.c (6.2.8-8) for (y = 0; y < (long) clip_mask->rows; y++) { q = GetImagePixels(clip_mask, 0, y, clip_mask->columns, 1); if (!q) { break; } for (x = 0; x < (long) clip_mask->columns; x++) { if (clip_mask->matte == MagickFalse) { q->opacity = PIXEL_INTENSITY(q); } q->red = q->opacity; q->green = q->opacity; q->blue = q->opacity; q += 1; } if (SyncImagePixels(clip_mask) == (MagickBooleanType)MagickFalse) { (void) DestroyImage(clip_mask); rm_magick_error("SyncImagePixels failed", NULL); } } if (SetImageStorageClass(clip_mask, DirectClass) == (MagickBooleanType)MagickFalse) { (void) DestroyImage(clip_mask); rm_magick_error("SetImageStorageClass failed", NULL); } clip_mask->matte = MagickTrue; // SetImageClipMask clones the clip_mask image. We can // destroy our copy after SetImageClipMask is done with it. (void) SetImageClipMask(image, clip_mask); (void) DestroyImage(clip_mask); } else { (void) SetImageClipMask(image, NULL); } return self; } /* Method: Image#matte Purpose: Get matte attribute Notes: Deprecated as of ImageMagick 6.3.6 */ VALUE Image_matte(VALUE self) { Image *image; image = rm_check_destroyed(self); return image->matte ? Qtrue : Qfalse; } /* Method: Image#matte= Purpose: Set matte attribute Notes: Deprecated as of ImageMagick 6.3.6. Calls Image_matte_eq. */ VALUE Image_matte_eq(VALUE self, VALUE matte) { #if defined(HAVE_TYPE_ALPHACHANNELTYPE) || defined(HAVE_SETIMAGEALPHACHANNEL) VALUE alpha_channel_type; if (RTEST(matte)) { alpha_channel_type = rb_const_get(Module_Magick, rb_intern("ActivateAlphaChannel")); } else { alpha_channel_type = rb_const_get(Module_Magick, rb_intern("DeactivateAlphaChannel")); } return Image_alpha_eq(self, alpha_channel_type); #else Image *image = rm_check_frozen(self); image->matte = RTEST(matte) ? MagickTrue : MagickFalse; return matte; #endif } /* Method: Image#matte_color Purpose: Return the matte color */ VALUE Image_matte_color(VALUE self) { Image *image = rm_check_destroyed(self); return PixelPacket_to_Color_Name(image, &image->matte_color); } /* Method: Image#matte_color= Purpose: Set the matte color */ VALUE Image_matte_color_eq(VALUE self, VALUE color) { Image *image = rm_check_frozen(self); Color_to_PixelPacket(&image->matte_color, color); return self; } /* Method: Image#matte_flood_fill(color, opacity, x, y, method) Purpose: Call MatteFloodFillImage */ VALUE Image_matte_flood_fill( VALUE self, VALUE color, VALUE opacity, VALUE x_obj, VALUE y_obj, VALUE method) { Image *image, *new_image; PixelPacket target; Quantum op; long x, y; PaintMethod pm; image = rm_check_destroyed(self); Color_to_PixelPacket(&target, color); op = APP2QUANTUM(opacity); VALUE_TO_ENUM(method, pm, PaintMethod); if (!(pm == FloodfillMethod || pm == FillToBorderMethod)) { rb_raise(rb_eArgError, "paint method must be FloodfillMethod or " "FillToBorderMethod (%d given)", pm); } x = NUM2LONG(x_obj); y = NUM2LONG(y_obj); if ((unsigned long)x > image->columns || (unsigned long)y > image->rows) { rb_raise(rb_eArgError, "target out of range. %ldx%ld given, image is %lux%lu" , x, y, image->columns, image->rows); } new_image = rm_clone_image(image); (void) MatteFloodfillImage(new_image, target, op, x, y, pm); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image#median_filter(radius=0.0) Purpose: applies a digital filter that improves the quality of a noisy image. Each pixel is replaced by the median in a set of neighboring pixels as defined by radius. Returns: a new image */ VALUE Image_median_filter(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; double radius = 0.0; ExceptionInfo exception; image = rm_check_destroyed(self); switch (argc) { case 1: radius = NUM2DBL(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 or 1)", argc); break; } GetExceptionInfo(&exception); new_image = MedianFilterImage(image, radius, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } DEF_ATTR_READERF(Image, mean_error_per_pixel, error.mean_error_per_pixel, dbl) /* Method: Image#mime_type Purpose: Return the officially registered (or de facto) MIME media-type corresponding to the image format. */ VALUE Image_mime_type(VALUE self) { Image *image; char *type; volatile VALUE mime_type; image = rm_check_destroyed(self); type = MagickToMime(image->magick); if (!type) { return Qnil; } mime_type = rb_str_new2(type); // The returned string must be deallocated by the user. magick_free(type); return mime_type; } /* Method: Image#minify Image#minify! Purpose: Scales an image proportionally to half its size Returns: minify: a new image 1/2x the size of the input image minify!: self, 1/2x */ VALUE Image_minify(VALUE self) { (void) rm_check_destroyed(self); return magnify(False, self, MinifyImage); } VALUE Image_minify_bang(VALUE self) { (void) rm_check_frozen(self); return magnify(True, self, MinifyImage); } /* Method: Image#modulate(>>) Purpose: control the brightness, saturation, and hue of an image Notes: all three arguments are optional and default to 100% */ VALUE Image_modulate(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; double pct_brightness = 100.0, pct_saturation = 100.0, pct_hue = 100.0; char modulate[100]; image = rm_check_destroyed(self); switch (argc) { case 3: pct_hue = 100*NUM2DBL(argv[2]); case 2: pct_saturation = 100*NUM2DBL(argv[1]); case 1: pct_brightness = 100*NUM2DBL(argv[0]); break; case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 to 3)", argc); break; } if (pct_brightness <= 0.0) { rb_raise(rb_eArgError, "brightness is %g%%, must be positive", pct_brightness); } sprintf(modulate, "%f%%,%f%%,%f%%", pct_brightness, pct_saturation, pct_hue); new_image = rm_clone_image(image); (void) ModulateImage(new_image, modulate); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image#monitor= proc Purpose: Establish a progress monitor Notes: A progress monitor is a callable object. Save the monitor proc as the client_data and establish `progress_monitor' as the monitor exit. When `progress_monitor' is called, retrieve the proc and call it. */ VALUE Image_monitor_eq(VALUE self, VALUE monitor) { Image *image = rm_check_frozen(self); if (NIL_P(monitor)) { image->progress_monitor = NULL; } else { (void) SetImageProgressMonitor(image, rm_progress_monitor, (void *)monitor); } return self; } /* Method: Image#monochrome? Purpose: return true if all the pixels in the image have the same red, green, and blue intensities and the intensity is either 0 or QuantumRange. */ VALUE Image_monochrome_q(VALUE self) { return has_attribute(self, IsMonochromeImage); } /* Method: Image#montage Purpose: Tile size and offset within an image montage. Only valid for montage images. */ DEF_ATTR_READER(Image, montage, str) /* Static: motion_blur(int argc, VALUE *argv, VALUE self, Image *fp) Purpose: called from Image_motion_blur and Image_sketch */ static VALUE motion_blur( int argc, VALUE *argv, VALUE self, Image *fp(const Image *, const double, const double, const double, ExceptionInfo *)) { Image *image, *new_image; double radius = 0.0; double sigma = 1.0; double angle = 0.0; ExceptionInfo exception; switch (argc) { case 3: angle = NUM2DBL(argv[2]); case 2: sigma = NUM2DBL(argv[1]); case 1: radius = NUM2DBL(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 1 to 3)", argc); break; } if (sigma == 0.0) { rb_raise(rb_eArgError, "sigma must be != 0.0"); } Data_Get_Struct(self, Image, image); GetExceptionInfo(&exception); new_image = (fp)(image, radius, sigma, angle, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#motion_blur(radius=0.0, sigma=1.0, angle=0.0) Purpose: simulates motion blur. Convolves the image with a Gaussian operator of the given radius and standard deviation (sigma). For reasonable results, radius should be larger than sigma. Use a radius of 0 and motion_blur selects a suitable radius for you. Angle gives the angle of the blurring motion. */ VALUE Image_motion_blur(int argc, VALUE *argv, VALUE self) { (void) rm_check_destroyed(self); return motion_blur(argc, argv, self, MotionBlurImage); } /* Method: Image#negate(grayscale=false) Purpose: negates the colors in the reference image. The grayscale option means that only grayscale values within the image are negated. Notes: The default for grayscale is false. */ VALUE Image_negate(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; unsigned int grayscale = MagickFalse; image = rm_check_destroyed(self); if (argc == 1) { grayscale = RTEST(argv[0]); } else if (argc > 1) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 or 1)", argc); } new_image = rm_clone_image(image); (void) NegateImage(new_image, grayscale); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* * Method: Image#negate_channel(grayscale=false, channel=AllChannels) * Returns a new image */ VALUE Image_negate_channel(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; ChannelType channels; unsigned int grayscale = MagickFalse; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); // There can be at most 1 remaining argument. if (argc > 1) { raise_ChannelType_error(argv[argc-1]); } else if (argc == 1) { grayscale = RTEST(argv[0]); } Data_Get_Struct(self, Image, image); new_image = rm_clone_image(image); (void)NegateImageChannel(new_image, channels, grayscale); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Extern: Image_alloc(cols,rows,[fill]) Purpose: "allocate" a new Image object Note: actually we defer allocating the image until the initialize method so we can run the parm block if it's present */ VALUE Image_alloc(VALUE class) { volatile VALUE image_obj; image_obj = Data_Wrap_Struct(class, NULL, rm_image_destroy, NULL); return image_obj; } /* Method: Image#initialize(cols,rows,[fill]) Purpose: initialize a new Image object If the fill argument is omitted, fill with background color */ VALUE Image_initialize(int argc, VALUE *argv, VALUE self) { volatile VALUE fill = 0; Info *info; volatile VALUE info_obj; Image *image; unsigned long cols, rows; switch (argc) { case 3: fill = argv[2]; case 2: rows = NUM2ULONG(argv[1]); cols = NUM2ULONG(argv[0]); break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 2 or 3)", argc); break; } // Create a new Info object to use when creating this image. info_obj = rm_info_new(); Data_Get_Struct(info_obj, Info, info); image = AllocateImage(info); if (!image) { rb_raise(rb_eNoMemError, "not enough memory to continue"); } // NOW store a real image in the image object. UPDATE_DATA_PTR(self, image); SetImageExtent(image, cols, rows); // If the caller did not supply a fill argument, call SetImage to fill the // image using the background color. The background color can be set by // specifying it when creating the Info parm block. if (!fill) { (void) SetImageBackgroundColor(image); } // fillobj.fill(self) else { (void) rb_funcall(fill, rm_ID_fill, 1, self); } return self; } /* External: rm_image_new(Image *) Purpose: create a new Image object from an Image structure Notes: since the Image is already created we don't need to call Image_alloc or Image_initialize. */ VALUE rm_image_new(Image *image) { if (!image) { rb_bug("rm_image_new called with NULL argument"); } (void) rm_trace_creation(image); return Data_Wrap_Struct(Class_Image, NULL, rm_image_destroy, image); } /* Method: Image#normalize Purpose: enhances the contrast of a color image by adjusting the pixels color to span the entire range of colors available */ VALUE Image_normalize(VALUE self) { Image *image, *new_image; image = rm_check_destroyed(self); new_image = rm_clone_image(image); (void) NormalizeImage(new_image); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image#normalize_channel(channel=AllChannels) Purpose: Call NormalizeImageChannel */ VALUE Image_normalize_channel(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; ChannelType channels; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); // Ensure all arguments consumed. if (argc > 0) { raise_ChannelType_error(argv[argc-1]); } new_image = rm_clone_image(image); (void) NormalizeImageChannel(new_image, channels); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } DEF_ATTR_READERF(Image, normalized_mean_error, error.normalized_mean_error, dbl) DEF_ATTR_READERF(Image, normalized_maximum_error, error.normalized_maximum_error, dbl) /* Method: Image#number_colors Purpose: return the number of unique colors in the image */ VALUE Image_number_colors(VALUE self) { Image *image; ExceptionInfo exception; unsigned long n = 0; image = rm_check_destroyed(self); GetExceptionInfo(&exception); n = (unsigned long) GetNumberColors(image, NULL, &exception); CHECK_EXCEPTION() (void) DestroyExceptionInfo(&exception); return ULONG2NUM(n); } DEF_ATTR_ACCESSOR(Image, offset, long) /* Method: Image#oil_paint(radius=3.0) Purpose: applies a special effect filter that simulates an oil painting */ VALUE Image_oil_paint(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; double radius = 3.0; ExceptionInfo exception; image = rm_check_destroyed(self); switch (argc) { case 1: radius = NUM2DBL(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 or 1)", argc); break; } GetExceptionInfo(&exception); new_image = OilPaintImage(image, radius, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#opaque(target-color-name, fill-color-name) Image#opaque(target-pixel, fill-pixel) Purpose: changes any pixel that matches target with the color defined by fill Notes: By default a pixel must match the specified target color exactly. Use image.fuzz to set the amount of tolerance acceptable to consider two colors as the same. */ VALUE Image_opaque(VALUE self, VALUE target, VALUE fill) { Image *image, *new_image; MagickPixelPacket target_pp; MagickPixelPacket fill_pp; image = rm_check_destroyed(self); new_image = rm_clone_image(image); // Allow color name or Pixel Color_to_MagickPixelPacket(image, &target_pp, target); Color_to_MagickPixelPacket(image, &fill_pp, fill); (void) PaintOpaqueImage(new_image, &target_pp, &fill_pp); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image#opaque? Purpose: return true if any of the pixels in the image have an opacity value other than opaque ( 0 ) */ VALUE Image_opaque_q(VALUE self) { return has_attribute(self, IsOpaqueImage); } /* Method: Image#ordered_dither(threshold_map='2x2') Purpose: perform ordered dither on image Notes: order must be 2, 3, or 4 (6.3.0) order can be any of the threshold strings listed by "convert -list Thresholds" but the default is still "2x2". I don't call OrderedDitherImages anymore. Sometime after IM 6.0.0 it quit working. IM and GM use the routines I use below to implement the "ordered-dither" option. */ VALUE Image_ordered_dither(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; int order; const char *threshold_map = "2x2"; ExceptionInfo exception; image = rm_check_destroyed(self); if (argc > 1) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 or 1)", argc); } if (argc == 1) { if (TYPE(argv[0]) == T_STRING) { threshold_map = StringValuePtr(argv[0]); } else { order = NUM2INT(argv[0]); if (order == 3) { threshold_map = "3x3"; } else if (order == 4) { threshold_map = "4x4"; } else if (order != 2) { rb_raise(rb_eArgError, "order must be 2, 3, or 4 (%d given)", order); } } } new_image = rm_clone_image(image); GetExceptionInfo(&exception); // ImageMagick >= 6.2.9 (void) OrderedPosterizeImage(new_image, threshold_map, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); return rm_image_new(new_image); } /* Method: Image#orientation Purpose: Return the orientation attribute as an OrientationType enum value. */ VALUE Image_orientation(VALUE self) { Image *image = rm_check_destroyed(self); return OrientationType_new(image->orientation); } /* Method: Image#orientation= Purpose: Set the orientation attribute */ VALUE Image_orientation_eq(VALUE self, VALUE orientation) { Image *image = rm_check_frozen(self); VALUE_TO_ENUM(orientation, image->orientation, OrientationType); return self; } /* Method: Image#page Purpose: the page attribute getter */ VALUE Image_page(VALUE self) { Image *image = rm_check_destroyed(self); return Rectangle_from_RectangleInfo(&image->page); } /* Method: Image#page= Purpose: the page attribute setter */ VALUE Image_page_eq(VALUE self, VALUE rect) { Image *image = rm_check_frozen(self); Rectangle_to_RectangleInfo(&image->page, rect); return self; } /* Method: Image#palette? Purpose: return true if the image is PseudoClass and has 256 unique colors or less. */ VALUE Image_palette_q(VALUE self) { return has_attribute(self, IsPaletteImage); } /* Method: Image.ping(file) Purpose: Call ImagePing Returns: Same as Image.read, except that PingImage does not return the pixel data. */ VALUE Image_ping(VALUE class, VALUE file_arg) { return rd_image(class, file_arg, PingImage); } /* Method: Image#pixel_color(x, y<, color>) Purpose: Gets/sets the color of the pixel at x,y Returns: Magick::Pixel for pixel x,y. If called to set a new color, the return value is the old color. Notes: "color", if present, may be either a color name or a Magick::Pixel. Based on Magick++'s Magick::pixelColor methods */ VALUE Image_pixel_color( int argc, VALUE *argv, VALUE self) { Image *image; PixelPacket old_color, new_color, *pixel; ExceptionInfo exception; long x, y; unsigned int set = False; MagickBooleanType okay; memset(&old_color, 0, sizeof(old_color)); image = rm_check_destroyed(self); switch (argc) { case 3: rb_check_frozen(self); set = True; // Replace with new color? The arg can be either a color name or // a Magick::Pixel. Color_to_PixelPacket(&new_color, argv[2]); case 2: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 2 or 3)", argc); break; } x = NUM2LONG(argv[0]); y = NUM2LONG(argv[1]); // Get the color of a pixel if (!set) { GetExceptionInfo(&exception); old_color = *AcquireImagePixels(image, x, y, 1, 1, &exception); CHECK_EXCEPTION() (void) DestroyExceptionInfo(&exception); // PseudoClass if (image->storage_class == PseudoClass) { IndexPacket *indexes = GetIndexes(image); old_color = image->colormap[*indexes]; } if (!image->matte) { old_color.opacity = OpaqueOpacity; } return Pixel_from_PixelPacket(&old_color); } // ImageMagick segfaults if the pixel location is out of bounds. // Do what IM does and return the background color. if (x < 0 || y < 0 || (unsigned long)x >= image->columns || (unsigned long)y >= image->rows) { return Pixel_from_PixelPacket(&image->background_color); } // Set the color of a pixel. Return previous color. // Convert to DirectClass if (image->storage_class == PseudoClass) { okay = SetImageStorageClass(image, DirectClass); rm_check_image_exception(image, RetainOnError); if (!okay) { rb_raise(Class_ImageMagickError, "SetImageStorageClass failed. Can't set pixel color."); } } pixel = GetImagePixels(image, x, y, 1, 1); rm_check_image_exception(image, RetainOnError); if (pixel) { old_color = *pixel; if (!image->matte) { old_color.opacity = OpaqueOpacity; } } *pixel = new_color; okay = SyncImagePixels(image); rm_check_image_exception(image, RetainOnError); if (!okay) { rb_raise(Class_ImageMagickError, "image pixels could not be synced"); } return Pixel_from_PixelPacket(&old_color); } /* Method: Image.pixel_interpolation_method Image.pixel_interpolation_method=method Purpose: Get/set the "interpolate" field in the Image structure. Ref: Image.interpolate_pixel_color */ VALUE Image_pixel_interpolation_method(VALUE self) { Image *image = rm_check_destroyed(self); return InterpolatePixelMethod_new(image->interpolate); } VALUE Image_pixel_interpolation_method_eq(VALUE self, VALUE method) { Image *image = rm_check_frozen(self); VALUE_TO_ENUM(method, image->interpolate, InterpolatePixelMethod); return self; } /* Method: Image#polaroid([angle=-5]) Purpose: Call PolaroidImage Notes: Accepts an options block to get Draw attributes for drawing the label. Specify self.border_color to set a non-default border color. */ VALUE Image_polaroid(int argc, VALUE *argv, VALUE self) { #if defined(HAVE_POLAROIDIMAGE) Image *image, *clone, *new_image; volatile VALUE options; double angle = -5.0; Draw *draw; ExceptionInfo exception; image = rm_check_destroyed(self); switch (argc) { case 1: angle = NUM2DBL(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 or 1)", argc); break; } options = rm_polaroid_new(); Data_Get_Struct(options, Draw, draw); clone = rm_clone_image(image); clone->background_color = draw->shadow_color; clone->border_color = draw->info->border_color; GetExceptionInfo(&exception); new_image = PolaroidImage(clone, draw->info, angle, &exception); rm_check_exception(&exception, clone, DestroyOnError); (void) DestroyImage(clone); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); #else argc = argc; // defeat "unused parameter" messages argv = argv; self = self; rm_not_implemented(); return(VALUE)0; #endif } /* Method: posterize Purpose: call PosterizeImage Notes: Image#posterize(levels=4, dither=false) */ VALUE Image_posterize(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; MagickBooleanType dither = MagickFalse; unsigned long levels = 4; image = rm_check_destroyed(self); switch (argc) { case 2: dither = (MagickBooleanType) RTEST(argv[1]); /* fall through */ case 1: levels = NUM2ULONG(argv[0]); /* fall through */ case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 to 2)", argc); } new_image = rm_clone_image(image); (void) PosterizeImage(new_image, levels, dither); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: preview Purpose: Call PreviewImage */ VALUE Image_preview(VALUE self, VALUE preview) { Image *image, *new_image; PreviewType preview_type; ExceptionInfo exception; GetExceptionInfo(&exception); image = rm_check_destroyed(self); VALUE_TO_ENUM(preview, preview_type, PreviewType); new_image = PreviewImage(image, preview_type, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#profile!(name, profile) Purpose: If "profile" is nil, deletes the profile. Otherwise "profile" must be a string containing the specified profile. */ VALUE Image_profile_bang(VALUE self, VALUE name, VALUE profile) { if (profile == Qnil) { return Image_delete_profile(self, name); } else { return set_profile(self, StringValuePtr(name), profile); } } DEF_ATTR_READER(Image, quality, ulong) /* Method: Image#quantum_depth -> 8, 16, or 32 Purpose: Return image depth to nearest quantum Notes: IM 6.0.0 introduced GetImageQuantumDepth, IM 6.0.5 added a 2nd argument. The MagickFalse argument gives the 6.0.5 version the same behavior as before. */ VALUE Image_quantum_depth(VALUE self) { Image *image; unsigned long quantum_depth; image = rm_check_destroyed(self); quantum_depth = GetImageQuantumDepth(image, MagickFalse); rm_check_image_exception(image, RetainOnError); return ULONG2NUM(quantum_depth); } /* Method: Image#quantum_operator(operator, rvalue[, channel] ) Purpose: This method is an adapter method that calls the EvaluateImageChannel method Note 1: Historically this method used QuantumOperatorRegionImage in GraphicsMagick. By necessity this method implements the "lowest common denominator" of the two implementations. Note 2: If the channel argument is omitted, the default is AllChannels. */ VALUE Image_quantum_operator(int argc, VALUE *argv, VALUE self) { Image *image; QuantumExpressionOperator operator; MagickEvaluateOperator qop; double rvalue; ChannelType channel; ExceptionInfo exception; image = rm_check_destroyed(self); // The default channel is AllChannels channel = AllChannels; /* If there are 3 arguments, argument 2 is a ChannelType argument. Arguments 1 and 0 are required and are the rvalue and operator, respectively. */ switch (argc) { case 3: VALUE_TO_ENUM(argv[2], channel, ChannelType); /* Fall through */ case 2: rvalue = NUM2DBL(argv[1]); VALUE_TO_ENUM(argv[0], operator, QuantumExpressionOperator); break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 2 or 3)", argc); break; } // Map QuantumExpressionOperator to MagickEvaluateOperator switch (operator) { default: case UndefinedQuantumOperator: qop = UndefinedEvaluateOperator; break; case AddQuantumOperator: qop = AddEvaluateOperator; break; case AndQuantumOperator: qop = AndEvaluateOperator; break; case DivideQuantumOperator: qop = DivideEvaluateOperator; break; case LShiftQuantumOperator: qop = LeftShiftEvaluateOperator; break; case MaxQuantumOperator: qop = MaxEvaluateOperator; break; case MinQuantumOperator: qop = MinEvaluateOperator; break; case MultiplyQuantumOperator: qop = MultiplyEvaluateOperator; break; case OrQuantumOperator: qop = OrEvaluateOperator; break; case RShiftQuantumOperator: qop = RightShiftEvaluateOperator; break; case SubtractQuantumOperator: qop = SubtractEvaluateOperator; break; case XorQuantumOperator: qop = XorEvaluateOperator; break; } GetExceptionInfo(&exception); (void) EvaluateImageChannel(image, channel, qop, rvalue, &exception); CHECK_EXCEPTION() (void) DestroyExceptionInfo(&exception); return self; } /* Method: Image#quantize(>>>>) defaults: 256, Magick::RGBColorspace, true, 0, false Purpose: call QuantizeImage */ VALUE Image_quantize(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; QuantizeInfo quantize_info; image = rm_check_destroyed(self); GetQuantizeInfo(&quantize_info); switch (argc) { case 5: quantize_info.measure_error = (MagickBooleanType) RTEST(argv[4]); case 4: quantize_info.tree_depth = NUM2UINT(argv[3]); case 3: quantize_info.dither = (MagickBooleanType) RTEST(argv[2]); case 2: VALUE_TO_ENUM(argv[1], quantize_info.colorspace, ColorspaceType); case 1: quantize_info.number_colors = NUM2UINT(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 to 5)", argc); break; } new_image = rm_clone_image(image); (void) QuantizeImage(&quantize_info, new_image); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image#radial_blur(angle) Purpose: Call RadialBlurImage Notes: Angle is in degrees */ VALUE Image_radial_blur(VALUE self, VALUE angle) { Image *image, *new_image; ExceptionInfo exception; image = rm_check_destroyed(self); GetExceptionInfo(&exception); new_image = RadialBlurImage(image, NUM2DBL(angle), &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#radial_blur_channel(angle[, channel..]) Purpose: Call RadialBlurImageChannel Notes: Angle is in degrees */ VALUE Image_radial_blur_channel( int argc, VALUE *argv, VALUE self) { Image *image, *new_image; ExceptionInfo exception; ChannelType channels; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); // There must be 1 remaining argument. if (argc == 0) { rb_raise(rb_eArgError, "wrong number of arguments (0 for 1 or more)"); } else if (argc > 1) { raise_ChannelType_error(argv[argc-1]); } GetExceptionInfo(&exception); new_image = RadialBlurImageChannel(image, channels, NUM2DBL(argv[0]), &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#random_threshold_channel PUrpose: Call RandomThresholdImageChannel */ VALUE Image_random_threshold_channel( int argc, VALUE *argv, VALUE self) { Image *image, *new_image; ChannelType channels; char *thresholds; volatile VALUE geom_str; ExceptionInfo exception; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); // There must be 1 remaining argument. if (argc == 0) { rb_raise(rb_eArgError, "missing threshold argument"); } else if (argc > 1) { raise_ChannelType_error(argv[argc-1]); } // Accept any argument that has a to_s method. geom_str = rb_funcall(argv[0], rm_ID_to_s, 0); thresholds = StringValuePtr(geom_str); new_image = rm_clone_image(image); GetExceptionInfo(&exception); (void) RandomThresholdImageChannel(new_image, channels, thresholds, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); return rm_image_new(new_image); } /* Method: Image#raise(width=6, height=6, raised=true) Purpose: creates a simulated three-dimensional button-like effect by lightening and darkening the edges of the image. The "width" and "height" arguments define the width of the vertical and horizontal edge of the effect. If "raised" is true, creates a raised effect, otherwise a lowered effect. Returns: a new image */ VALUE Image_raise(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; RectangleInfo rect; int raised = MagickTrue; // default memset(&rect, 0, sizeof(rect)); rect.width = 6; // default rect.height = 6; // default image = rm_check_destroyed(self); switch (argc) { case 3: raised = RTEST(argv[2]); case 2: rect.height = NUM2ULONG(argv[1]); case 1: rect.width = NUM2ULONG(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 to 3)", argc); break; } new_image = rm_clone_image(image); (void) RaiseImage(new_image, &rect, raised); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image.read(file) Purpose: Call ReadImage Returns: An array of 1 or more new image objects. */ VALUE Image_read(VALUE class, VALUE file_arg) { return rd_image(class, file_arg, ReadImage); } /* * Static: file_arg_rescue * Purpose: called when `rm_obj_to_s' raised an exception */ static VALUE file_arg_rescue(VALUE arg) { rb_raise(rb_eTypeError, "argument must be path name or open file (%s given)", rb_class2name(CLASS_OF(arg))); } /* Static: rd_image(class, file, reader) Purpose: Transform arguments, call either ReadImage or PingImage Returns: see Image_read or Image_ping Notes: yields to a block to get Image::Info attributes before calling Read/PingImage */ static VALUE rd_image(VALUE class, VALUE file, reader_t reader) { char *filename; long filename_l; Info *info; volatile VALUE info_obj; Image *images; ExceptionInfo exception; class = class; // defeat gcc message // Create a new Info structure for this read/ping info_obj = rm_info_new(); Data_Get_Struct(info_obj, Info, info); if (TYPE(file) == T_FILE) { OpenFile *fptr; // Ensure file is open - raise error if not GetOpenFile(file, fptr); rb_io_check_readable(fptr); SetImageInfoFile(info, GetReadFile(fptr)); } else { // Convert arg to string. If an exception occurs raise an error condition. file = rb_rescue(rb_String, file, file_arg_rescue, file); filename = rm_str2cstr(file, &filename_l); filename_l = min(filename_l, MaxTextExtent-1); memcpy(info->filename, filename, (size_t)filename_l); info->filename[filename_l] = '\0'; SetImageInfoFile(info, NULL); } GetExceptionInfo(&exception); images = (reader)(info, &exception); rm_check_exception(&exception, images, DestroyOnError); (void) DestroyExceptionInfo(&exception); return array_from_images(images); } /* Method: Image#recolor(matrix) Purpose: Call RecolorImage */ VALUE Image_recolor(VALUE self, VALUE color_matrix) { #if defined(HAVE_RECOLORIMAGE) Image *image, *new_image; unsigned long order; long x, len; double *matrix; ExceptionInfo exception; image = rm_check_destroyed(self); GetExceptionInfo(&exception); // Allocate color matrix from Ruby's memory len = RARRAY_LEN(color_matrix); matrix = ALLOC_N(double, len); for (x = 0; x < len; x++) { matrix[x] = NUM2DBL(rb_ary_entry(color_matrix, x)); } order = (unsigned long)sqrt((double)(len + 1.0)); // RecolorImage sets the ExceptionInfo and returns a NULL image if an error occurs. new_image = RecolorImage(image, order, matrix, &exception); xfree((void *)matrix); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); return rm_image_new(new_image); #else self = self; // defeat "unused parameter" message color_matrix = color_matrix; rm_not_implemented(); return(VALUE)0; #endif } /* Method: Image.read_inline(content) Purpose: Read a Base64-encoded image Returns: an array of new images Notes: this is similar to, but not the same as ReadInlineImage. ReadInlineImage requires a comma preceeding the image data. This method allows but does not require a comma. */ VALUE Image_read_inline(VALUE self, VALUE content) { volatile VALUE info_obj; Image *images; ImageInfo *info; char *image_data; long x, image_data_l; unsigned char *blob; size_t blob_l; ExceptionInfo exception; self = self; // defeat gcc message image_data = rm_str2cstr(content, &image_data_l); // Search for a comma. If found, we'll set the start of the // image data just following the comma. Otherwise we'll assume // the image data starts with the first byte. for (x = 0; x < image_data_l; x++) { if (image_data[x] == ',') { break; } } if (x < image_data_l) { image_data += x + 1; } blob = Base64Decode(image_data, &blob_l); if (blob_l == 0) { rb_raise(rb_eArgError, "can't decode image"); } GetExceptionInfo(&exception); // Create a new Info structure for this read. About the // only useful attribute that can be set is `format'. info_obj = rm_info_new(); Data_Get_Struct(info_obj, Info, info); images = BlobToImage(info, blob, blob_l, &exception); magick_free((void *)blob); rm_check_exception(&exception, images, DestroyOnError); (void) DestroyExceptionInfo(&exception); return array_from_images(images); } /* Static: array_from_images Purpose: convert a list of images to an array of Image objects */ static VALUE array_from_images(Image *images) { volatile VALUE image_obj, image_ary; Image *image; // Orphan the image, create an Image object, add it to the array. image_ary = rb_ary_new(); while (images) { image = RemoveFirstImageFromList(&images); image_obj = rm_image_new(image); (void) rb_ary_push(image_ary, image_obj); } return image_ary; } /* Method: Image#reduce_noise(radius) Purpose: smooths the contours of an image while still preserving edge information Returns: a new image */ VALUE Image_reduce_noise(VALUE self, VALUE radius) { Image *image, *new_image; ExceptionInfo exception; image = rm_check_destroyed(self); GetExceptionInfo(&exception); new_image = ReduceNoiseImage(image, NUM2DBL(radius), &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); return rm_image_new(new_image); } /* Method: Image#rendering_intent= Purpose: get rendering_intent */ VALUE Image_rendering_intent(VALUE self) { Image *image = rm_check_destroyed(self); return RenderingIntent_new(image->rendering_intent); } /* Method: Image#rendering_intent= Purpose: set rendering_intent */ VALUE Image_rendering_intent_eq(VALUE self, VALUE ri) { Image *image = rm_check_frozen(self); VALUE_TO_ENUM(ri, image->rendering_intent, RenderingIntent); return self; } /* Method: Image#resize(scale) or (cols, rows<, filter<, blur>>) Image#resize!(scale) or (cols, rows<, filter<, blur>>) Purpose: scales an image to the desired dimensions using the specified filter and blur factor Returns: resize: a resized copy of the input image resize!: self, resized Default: if filter is not specified, use image->filter if blur is not specified, use image->blur */ static VALUE resize(int bang, int argc, VALUE *argv, VALUE self) { Image *image, *new_image; double scale; FilterTypes filter; unsigned long rows, columns; double blur, drows, dcols; ExceptionInfo exception; Data_Get_Struct(self, Image, image); // Set up defaults filter = image->filter; blur = image->blur; rows = image->rows; columns = image->columns; switch (argc) { case 4: blur = NUM2DBL(argv[3]); case 3: VALUE_TO_ENUM(argv[2], filter, FilterTypes); case 2: rows = NUM2ULONG(argv[1]); columns = NUM2ULONG(argv[0]); if (columns == 0 || rows == 0) { rb_raise(rb_eArgError, "invalid result dimension (%lu, %lu given)", columns, rows); } break; case 1: scale = NUM2DBL(argv[0]); if (scale < 0.0) { rb_raise(rb_eArgError, "invalid scale value (%g given)", scale); } drows = scale * image->rows + 0.5; dcols = scale * image->columns + 0.5; if (drows > (double)ULONG_MAX || dcols > (double)ULONG_MAX) { rb_raise(rb_eRangeError, "resized image too big"); } rows = (unsigned long) drows; columns = (unsigned long) dcols; break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 1 to 4)", argc); break; } GetExceptionInfo(&exception); new_image = ResizeImage(image, columns, rows, filter, blur, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); if (bang) { UPDATE_DATA_PTR(self, new_image); (void) rm_image_destroy(image); return self; } return rm_image_new(new_image); } VALUE Image_resize(int argc, VALUE *argv, VALUE self) { (void) rm_check_destroyed(self); return resize(False, argc, argv, self); } VALUE Image_resize_bang(int argc, VALUE *argv, VALUE self) { (void) rm_check_frozen(self); return resize(True, argc, argv, self); } /* Method: Image#roll(x_offset, y_offset) Purpose: offsets an image as defined by x_offset and y_offset Returns: a rolled copy of the input image */ VALUE Image_roll(VALUE self, VALUE x_offset, VALUE y_offset) { Image *image, *new_image; ExceptionInfo exception; image = rm_check_destroyed(self); GetExceptionInfo(&exception); new_image = RollImage(image, NUM2LONG(x_offset), NUM2LONG(y_offset), &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#rotate(degrees [,'<' | '>']) Purpose: creates a new image that is a rotated copy of an existing one Image#rotate!(degrees) Purpose: rotates the image by the specified number of degrees Note: If the 2nd argument is '<' rotate only if width < height. If the 2nd argument is '>' rotate only if width > height. */ static VALUE rotate(int bang, int argc, VALUE *argv, VALUE self) { Image *image, *new_image; double degrees; char *arrow; long arrow_l; ExceptionInfo exception; Data_Get_Struct(self, Image, image); switch (argc) { case 2: arrow = rm_str2cstr(argv[1], &arrow_l); if (arrow_l != 1 || (*arrow != '<' && *arrow != '>')) { rb_raise(rb_eArgError, "second argument must be '<' or '>', '%s' given", arrow); } if (*arrow == '>' && image->columns <= image->rows) { return Qnil; } if (*arrow == '<' && image->columns >= image->rows) { return Qnil; } case 1: degrees = NUM2DBL(argv[0]); break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 1 or 2)", argc); break; } GetExceptionInfo(&exception); new_image = RotateImage(image, degrees, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); if (bang) { UPDATE_DATA_PTR(self, new_image); (void) rm_image_destroy(image); return self; } return rm_image_new(new_image); } VALUE Image_rotate(int argc, VALUE *argv, VALUE self) { (void) rm_check_destroyed(self); return rotate(False, argc, argv, self); } VALUE Image_rotate_bang(int argc, VALUE *argv, VALUE self) { (void) rm_check_frozen(self); return rotate(True, argc, argv, self); } DEF_ATTR_READER(Image, rows, int) /* Method: Image#sample(scale) or (cols, rows) Image#sample! Purpose: scales an image to the desired dimensions with pixel sampling Returns: sampled: a sampled copy of the input image sample!: self, sampled */ VALUE Image_sample(int argc, VALUE *argv, VALUE self) { (void) rm_check_destroyed(self); return scale(False, argc, argv, self, SampleImage); } VALUE Image_sample_bang(int argc, VALUE *argv, VALUE self) { (void) rm_check_frozen(self); return scale(True, argc, argv, self, SampleImage); } /* Method: Image#scale(scale) or (cols, rows) Image#scale! Purpose: changes the size of an image to the given dimensions Returns: scale: a scaled copy of the input image scale!: self, scaled */ VALUE Image_scale(int argc, VALUE *argv, VALUE self) { (void) rm_check_destroyed(self); return scale(False, argc, argv, self, ScaleImage); } VALUE Image_scale_bang(int argc, VALUE *argv, VALUE self) { (void) rm_check_frozen(self); return scale(True, argc, argv, self, ScaleImage); } /* Static: scale Purpose: Call ScaleImage or SampleImage Arguments: if 1 argument > 0, multiply current size by this much if 2 arguments, (cols, rows) */ static VALUE scale(int bang, int argc, VALUE *argv, VALUE self, scaler_t scaler) { Image *image, *new_image; unsigned long columns, rows; double scale, drows, dcols; ExceptionInfo exception; Data_Get_Struct(self, Image, image); switch (argc) { case 2: columns = NUM2ULONG(argv[0]); rows = NUM2ULONG(argv[1]); if (columns == 0 || rows == 0) { rb_raise(rb_eArgError, "invalid result dimension (%lu, %lu given)", columns, rows); } break; case 1: scale = NUM2DBL(argv[0]); if (scale <= 0) { rb_raise(rb_eArgError, "invalid scale value (%g given)", scale); } drows = scale * image->rows + 0.5; dcols = scale * image->columns + 0.5; if (drows > (double)ULONG_MAX || dcols > (double)ULONG_MAX) { rb_raise(rb_eRangeError, "resized image too big"); } rows = (unsigned long) drows; columns = (unsigned long) dcols; break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 1 or 2)", argc); break; } GetExceptionInfo(&exception); new_image = (scaler)(image, columns, rows, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); if (bang) { UPDATE_DATA_PTR(self, new_image); (void) rm_image_destroy(image); return self; } return rm_image_new(new_image); } DEF_ATTR_READER(Image, scene, ulong) /* * Method: Image#set_channel_depth(channel, depth) * Purpose: Call SetImageChannelDepth */ VALUE Image_set_channel_depth(VALUE self, VALUE channel_arg, VALUE depth) { Image *image; ChannelType channel; unsigned long channel_depth; image = rm_check_frozen(self); VALUE_TO_ENUM(channel_arg, channel, ChannelType); channel_depth = NUM2ULONG(depth); (void) SetImageChannelDepth(image, channel, channel_depth); rm_check_image_exception(image, RetainOnError); return self; } /* Method: separate(channel[, channel...]) Purpose: call SeparateImages Returns: returns a new ImageList */ VALUE Image_separate(int argc, VALUE *argv, VALUE self) { Image *image, *new_images; ChannelType channels = 0; ExceptionInfo exception; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); // All arguments are ChannelType enums if (argc > 0) { raise_ChannelType_error(argv[argc-1]); } GetExceptionInfo(&exception); new_images = SeparateImages(image, channels, &exception); rm_check_exception(&exception, new_images, DestroyOnError); DestroyExceptionInfo(&exception); rm_ensure_result(new_images); return rm_imagelist_from_images(new_images); } /* * Method: Image#sepiatone(threshold=QuantumRange) * Purpose: Call SepiaToneImage */ VALUE Image_sepiatone(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; double threshold = (double) QuantumRange; ExceptionInfo exception; image = rm_check_destroyed(self); switch (argc) { case 1: threshold = NUM2DBL(argv[0]); break; case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 or 1)", argc); } GetExceptionInfo(&exception); new_image = SepiaToneImage(image, threshold, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#segment(colorspace=RGBColorspace, cluster_threshold=1.0, smoothing_threshold=1.5, verbose=false) Purpose: Call SegmentImage Notes: the default values are the same as Magick++ */ VALUE Image_segment(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; int colorspace = RGBColorspace; // These are the Magick++ defaults unsigned int verbose = MagickFalse; double cluster_threshold = 1.0; double smoothing_threshold = 1.5; image = rm_check_destroyed(self); switch (argc) { case 4: verbose = RTEST(argv[3]); case 3: smoothing_threshold = NUM2DBL(argv[2]); case 2: cluster_threshold = NUM2DBL(argv[1]); case 1: VALUE_TO_ENUM(argv[0], colorspace, ColorspaceType); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 to 4)", argc); break; } new_image = rm_clone_image(image); (void) SegmentImage(new_image, colorspace, verbose, cluster_threshold, smoothing_threshold); rm_check_image_exception(new_image, DestroyOnError); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#opacity= Purpose: Call SetImageOpacity */ VALUE Image_opacity_eq(VALUE self, VALUE opacity_arg) { Image *image; Quantum opacity; image = rm_check_frozen(self); opacity = APP2QUANTUM(opacity_arg); (void) SetImageOpacity(image, opacity); rm_check_image_exception(image, RetainOnError); return self; } /* Method: Image#properties [{ |k,v| block }] Purpose: Traverse the attributes and yield to the block. If no block, return a hash of all the attribute keys & values Notes: I use the word "properties" to distinguish between these "user-added" attribute strings and Image object attributes. */ VALUE Image_properties(VALUE self) { Image *image; volatile VALUE attr_hash; volatile VALUE ary; #if !defined(HAVE_GETNEXTIMAGEPROPERTY) const ImageAttribute *attr; image = rm_check_destroyed(self); // If block, iterate over attributes if (rb_block_given_p()) { ary = rb_ary_new2(2); ResetImageAttributeIterator(image); attr = GetNextImageAttribute(image); while (attr) { (void) rb_ary_store(ary, 0, rb_str_new2(attr->key)); (void) rb_ary_store(ary, 1, rb_str_new2(attr->value)); (void) rb_yield(ary); attr = GetNextImageAttribute(image); } rm_check_image_exception(image, RetainOnError); return self; } // otherwise return properties hash else { attr_hash = rb_hash_new(); ResetImageAttributeIterator(image); attr = GetNextImageAttribute(image); while (attr) { (void) rb_hash_aset(attr_hash, rb_str_new2(attr->key), rb_str_new2(attr->value)); attr = GetNextImageAttribute(image); } rm_check_image_exception(image, RetainOnError); return attr_hash; } #else char *property; const char *value; image = rm_check_destroyed(self); if (rb_block_given_p()) { ary = rb_ary_new2(2); ResetImagePropertyIterator(image); property = GetNextImageProperty(image); while (property) { value = GetImageProperty(image, property); (void) rb_ary_store(ary, 0, rb_str_new2(property)); (void) rb_ary_store(ary, 1, rb_str_new2(value)); (void) rb_yield(ary); property = GetNextImageProperty(image); } rm_check_image_exception(image, RetainOnError); return self; } // otherwise return properties hash else { attr_hash = rb_hash_new(); ResetImagePropertyIterator(image); property = GetNextImageProperty(image); while (property) { value = GetImageProperty(image, property); (void) rb_hash_aset(attr_hash, rb_str_new2(property), rb_str_new2(value)); property = GetNextImageProperty(image); } rm_check_image_exception(image, RetainOnError); return attr_hash; } #endif } /* Method: Image#shade(shading=false, azimuth=30, elevation=30) Purpose: shines a distant light on an image to create a three-dimensional effect. You control the positioning of the light with azimuth and elevation; azimuth is measured in degrees off the x axis and elevation is measured in pixels above the Z axis Returns: a new image */ VALUE Image_shade(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; double azimuth = 30.0, elevation = 30.0; unsigned int shading=MagickFalse; ExceptionInfo exception; image = rm_check_destroyed(self); switch (argc) { case 3: elevation = NUM2DBL(argv[2]); case 2: azimuth = NUM2DBL(argv[1]); case 1: shading = RTEST(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 to 3)", argc); break; } GetExceptionInfo(&exception); new_image = ShadeImage(image, shading, azimuth, elevation, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#shadow(x_offset=4, y_offset=4, sigma=4.0, opacity=1.0) x- and y-offsets are the pixel offset opacity is either a number between 0 and 1 or a string "NN%" sigma is the std. dev. of the Gaussian, in pixels. Purpose: Call ShadowImage Notes: The defaults are taken from the mogrify.c source, except for opacity, which has no default. Introduced in 6.1.7 */ VALUE Image_shadow(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; double opacity = 100.0; double sigma = 4.0; long x_offset = 4L; long y_offset = 4L; ExceptionInfo exception; image = rm_check_destroyed(self); switch (argc) { case 4: opacity = rm_percentage(argv[3]); // Clamp to 1.0 < x <= 100.0 if (fabs(opacity) < 0.01) { rb_warning("shadow will be transparent - opacity %g very small", opacity); } opacity = FMIN(opacity, 1.0); opacity = FMAX(opacity, 0.01); opacity *= 100.0; case 3: sigma = NUM2DBL(argv[2]); case 2: y_offset = NUM2LONG(argv[1]); case 1: x_offset = NUM2LONG(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 to 4)", argc); break; } GetExceptionInfo(&exception); new_image = ShadowImage(image, opacity, sigma, x_offset, y_offset, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#sharpen(radius=0, sigma=1) Purpose: sharpens an image Returns: a new image */ VALUE Image_sharpen(int argc, VALUE *argv, VALUE self) { return effect_image(self, argc, argv, SharpenImage); } /* * Method: Image#sharpen_channel(radius=0, sigma=1, channel=AllChannels) * Returns: a new image */ VALUE Image_sharpen_channel(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; ChannelType channels; ExceptionInfo exception; double radius = 0.0, sigma = 1.0; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); // There must be 0, 1, or 2 remaining arguments. switch (argc) { case 2: sigma = NUM2DBL(argv[1]); /* Fall thru */ case 1: radius = NUM2DBL(argv[0]); /* Fall thru */ case 0: break; default: raise_ChannelType_error(argv[argc-1]); } new_image = rm_clone_image(image); GetExceptionInfo(&exception); (void) SharpenImageChannel(new_image, channels, radius, sigma, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); return rm_image_new(new_image); } /* Method: Image#shave(width, height) Image#shave!(width, height) Purpose: shaves pixels from the image edges, leaving a rectangle of the specified width & height in the center Returns: shave: a new image shave!: self, shaved */ VALUE Image_shave( VALUE self, VALUE width, VALUE height) { (void) rm_check_destroyed(self); return xform_image(False, self, INT2FIX(0), INT2FIX(0), width, height, ShaveImage); } VALUE Image_shave_bang( VALUE self, VALUE width, VALUE height) { (void) rm_check_frozen(self); return xform_image(True, self, INT2FIX(0), INT2FIX(0), width, height, ShaveImage); } /* Method: Image#shear(x_shear, y_shear) Purpose: Calls ShearImage Notes: shear angles are measured in degrees Returns: a new image */ VALUE Image_shear( VALUE self, VALUE x_shear, VALUE y_shear) { Image *image, *new_image; ExceptionInfo exception; image = rm_check_destroyed(self); GetExceptionInfo(&exception); new_image = ShearImage(image, NUM2DBL(x_shear), NUM2DBL(y_shear), &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* * Method: Image#sigmoidal_contrast_channel(contrast=3.0, midpoint=50.0, sharpen=false [, channel=AllChannels]); */ VALUE Image_sigmoidal_contrast_channel(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; MagickBooleanType sharpen = MagickFalse; double contrast = 3.0; double midpoint = 50.0; ChannelType channels; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); switch (argc) { case 3: sharpen = (MagickBooleanType) RTEST(argv[2]); case 2: midpoint = NUM2DBL(argv[1]); case 1: contrast = NUM2DBL(argv[0]); case 0: break; default: raise_ChannelType_error(argv[argc-1]); break; } new_image = rm_clone_image(image); (void) SigmoidalContrastImageChannel(new_image, channels, sharpen, contrast, midpoint); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image#signature Purpose: computes a message digest from an image pixel stream with an implementation of the NIST SHA-256 Message Digest algorithm. */ VALUE Image_signature(VALUE self) { Image *image; const char *signature; image = rm_check_destroyed(self); (void) SignatureImage(image); signature = rm_get_property(image, "signature"); rm_check_image_exception(image, RetainOnError); if (!signature) { return Qnil; } return rb_str_new(signature, 64); } /* Method: Image#sketch(radius=0.0, sigma=1.0, angle=0.0) Purpose: Call SketchImage */ VALUE Image_sketch(int argc, VALUE *argv, VALUE self) { (void) rm_check_destroyed(self); return motion_blur(argc, argv, self, SketchImage); } /* Method: Image#solarize(threshold=50.0) Purpose: applies a special effect to the image, similar to the effect achieved in a photo darkroom by selectively exposing areas of photo sensitive paper to light. Threshold ranges from 0 to QuantumRange and is a measure of the extent of the solarization. */ VALUE Image_solarize(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; double threshold = 50.0; image = rm_check_destroyed(self); switch (argc) { case 1: threshold = NUM2DBL(argv[0]); if (threshold < 0.0 || threshold > QuantumRange) { rb_raise(rb_eArgError, "threshold out of range, must be >= 0.0 and < QuantumRange"); } case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 or 1)", argc); break; } new_image = rm_clone_image(image); (void) SolarizeImage(new_image, threshold); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image#spaceship (a <=> b) Purpose: compare two images Returns: -1, 0, 1 */ VALUE Image_spaceship(VALUE self, VALUE other) { Image *imageA, *imageB; const char *sigA, *sigB; int res; imageA = rm_check_destroyed(self); // If the other object isn't a Image object, then they can't be equal. if (!rb_obj_is_kind_of(other, Class_Image)) { return Qnil; } imageB = rm_check_destroyed(other); (void) SignatureImage(imageA); (void) SignatureImage(imageB); sigA = rm_get_property(imageA, "signature"); sigB = rm_get_property(imageB, "signature"); if (!sigA || !sigB) { rb_raise(Class_ImageMagickError, "can't get image signature"); } res = memcmp(sigA, sigB, 64); res = res > 0 ? 1 : (res < 0 ? -1 : 0); // reduce to 1, -1, 0 return INT2FIX(res); } /* Method: Image#splice(x, y, width, height[, color]) Purpose: Splice a solid color into the part of the image specified by the x, y, width, and height arguments. If the color argument is specified it must be a color name or Pixel. If not specified uses the background color. Notes: splice is the inverse of chop */ VALUE Image_splice(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; PixelPacket color, old_color; RectangleInfo rectangle; ExceptionInfo exception; image = rm_check_destroyed(self); switch (argc) { case 4: // use background color color = image->background_color; break; case 5: // Convert color argument to PixelPacket Color_to_PixelPacket(&color, argv[4]); break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 4 or 5)", argc); break; } rectangle.x = NUM2LONG(argv[0]); rectangle.y = NUM2LONG(argv[1]); rectangle.width = NUM2ULONG(argv[2]); rectangle.height = NUM2ULONG(argv[3]); GetExceptionInfo(&exception); // Swap in color for the duration of this call. old_color = image->background_color; image->background_color = color; new_image = SpliceImage(image, &rectangle, &exception); image->background_color = old_color; rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#spread(radius=3) Purpose: randomly displaces each pixel in a block defined by "radius" Returns: a new image */ VALUE Image_spread(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; unsigned int radius = 3; ExceptionInfo exception; image = rm_check_destroyed(self); switch (argc) { case 1: radius = NUM2UINT(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 or 1)", argc); break; } GetExceptionInfo(&exception); new_image = SpreadImage(image, radius, &exception); rm_check_exception(&exception, new_image, DestroyOnError); rm_ensure_result(new_image); (void) DestroyExceptionInfo(&exception); return rm_image_new(new_image); } DEF_ATTR_ACCESSOR(Image, start_loop, bool) /* Method: Image#stegano(watermark, offset) Purpose: hides a digital watermark within the image. Recover the hidden watermark later to prove that the authenticity of an image. "Offset" is the start position within the image to hide the watermark. Returns: a new image */ VALUE Image_stegano( VALUE self, VALUE watermark_image, VALUE offset) { Image *image, *new_image; volatile VALUE wm_image; Image *watermark; ExceptionInfo exception; image = rm_check_destroyed(self); wm_image = ImageList_cur_image(watermark_image); watermark = rm_check_destroyed(wm_image); image->offset = NUM2LONG(offset); GetExceptionInfo(&exception); new_image = SteganoImage(image, watermark, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#stereo(offset_image) Purpose: combines two images and produces a single image that is the composite of a left and right image of a stereo pair. Special red-green stereo glasses are required to view this effect. Returns: a new image */ VALUE Image_stereo( VALUE self, VALUE offset_image_arg) { Image *image, *new_image; volatile VALUE offset_image; Image *offset; ExceptionInfo exception; image = rm_check_destroyed(self); offset_image = ImageList_cur_image(offset_image_arg); offset = rm_check_destroyed(offset_image); GetExceptionInfo(&exception); new_image = StereoImage(image, offset, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#class_type Purpose: return the image's storage class (a.k.a. storage type, class type) Notes: based on Magick++'s Magick::Magick::classType */ VALUE Image_class_type(VALUE self) { Image *image = rm_check_destroyed(self); return ClassType_new(image->storage_class); } /* Method: Image#class_type= Purpose: change the image's storage class Notes: based on Magick++'s Magick::Magick::classType */ VALUE Image_class_type_eq(VALUE self, VALUE new_class_type) { Image *image; ClassType class_type; QuantizeInfo qinfo; image = rm_check_frozen(self); VALUE_TO_ENUM(new_class_type, class_type, ClassType); if (image->storage_class == PseudoClass && class_type == DirectClass) { (void) SyncImage(image); magick_free(image->colormap); image->colormap = NULL; } else if (image->storage_class == DirectClass && class_type == PseudoClass) { GetQuantizeInfo(&qinfo); qinfo.number_colors = QuantumRange+1; (void) QuantizeImage(&qinfo, image); } (void) SetImageStorageClass(image, class_type); return self; } /* Method: Image#store_pixels Purpose: Replace the pixels in the specified rectangle Notes: Calls GetImagePixels, then SyncImagePixels after replacing the pixels. This is the complement of get_pixels. The array object returned by get_pixels is suitable for use as the "new_pixels" argument. */ VALUE Image_store_pixels( VALUE self, VALUE x_arg, VALUE y_arg, VALUE cols_arg, VALUE rows_arg, VALUE new_pixels) { Image *image; Pixel *pixels, *pixel; volatile VALUE new_pixel; long n, size; long x, y; unsigned long cols, rows; unsigned int okay; image = rm_check_destroyed(self); x = NUM2LONG(x_arg); y = NUM2LONG(y_arg); cols = NUM2ULONG(cols_arg); rows = NUM2ULONG(rows_arg); if (x < 0 || y < 0 || x+cols > image->columns || y+rows > image->rows) { rb_raise(rb_eRangeError, "geometry (%lux%lu%+ld%+ld) exceeds image bounds" , cols, rows, x, y); } size = (long)(cols * rows); rm_check_ary_len(new_pixels, size); okay = SetImageStorageClass(image, DirectClass); rm_check_image_exception(image, RetainOnError); if (!okay) { rb_raise(Class_ImageMagickError, "SetImageStorageClass failed. Can't store pixels."); } // Get a pointer to the pixels. Replace the values with the PixelPackets // from the pixels argument. pixels = GetImagePixels(image, x, y, cols, rows); rm_check_image_exception(image, RetainOnError); if (pixels) { for (n = 0; n < size; n++) { new_pixel = rb_ary_entry(new_pixels, n); Data_Get_Struct(new_pixel, Pixel, pixel); pixels[n] = *pixel; } okay = SyncImagePixels(image); rm_check_image_exception(image, RetainOnError); if (!okay) { rb_raise(Class_ImageMagickError, "SyncImagePixels failed. Can't store pixels."); } } return self; } /* Method: Image#strip! Purpose: strips an image of all profiles and comments. */ VALUE Image_strip_bang(VALUE self) { Image *image = rm_check_frozen(self); (void) StripImage(image); rm_check_image_exception(image, RetainOnError); return self; } /* Method: Image#swirl(degrees) Purpose: swirls the pixels about the center of the image, where degrees indicates the sweep of the arc through which each pixel is moved. You get a more dramatic effect as the degrees move from 1 to 360. */ VALUE Image_swirl(VALUE self, VALUE degrees) { Image *image, *new_image; ExceptionInfo exception; image = rm_check_destroyed(self); GetExceptionInfo(&exception); new_image = SwirlImage(image, NUM2DBL(degrees), &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#sync_profiles() Purpose: synchronizes image properties with the image profiles */ VALUE Image_sync_profiles(VALUE self) { #if defined(HAVE_SYNCIMAGEPROFILES) Image *image = rm_check_destroyed(self); volatile VALUE okay = SyncImageProfiles(image) ? Qtrue : Qfalse; rm_check_image_exception(image, RetainOnError); return okay; #else self = self; rm_not_implemented(); return(VALUE)0; #endif } /* Method: Image#texture_flood_fill(color, texture, x, y, method) Purpose: Emulates Magick++'s floodFillTexture If the FloodfillMethod method is specified, flood-fills texture across pixels starting at the target pixel and matching the specified color. If the FillToBorderMethod method is specified, flood-fills "texture across pixels starting at the target pixel and stopping at pixels matching the specified color." */ VALUE Image_texture_flood_fill( VALUE self, VALUE color_obj, VALUE texture_obj, VALUE x_obj, VALUE y_obj, VALUE method_obj) { Image *image, *new_image; Image *texture_image; PixelPacket color; volatile VALUE texture; DrawInfo *draw_info; long x, y; PaintMethod method; image = rm_check_destroyed(self); Color_to_PixelPacket(&color, color_obj); texture = ImageList_cur_image(texture_obj); texture_image = rm_check_destroyed(texture); x = NUM2LONG(x_obj); y = NUM2LONG(y_obj); if ((unsigned long)x > image->columns || (unsigned long)y > image->rows) { rb_raise(rb_eArgError, "target out of range. %ldx%ld given, image is %lux%lu" , x, y, image->columns, image->rows); } VALUE_TO_ENUM(method_obj, method, PaintMethod); if (method != FillToBorderMethod && method != FloodfillMethod) { rb_raise(rb_eArgError, "paint method must be FloodfillMethod or " "FillToBorderMethod (%d given)", (int)method); } draw_info = CloneDrawInfo(NULL, NULL); if (!draw_info) { rb_raise(rb_eNoMemError, "not enough memory to continue"); } draw_info->fill_pattern = rm_clone_image(texture_image); new_image = rm_clone_image(image); // Hack: By-pass bug in ColorFloodfillImage that tests // the fill color even though the fill color isn't used. if (method == FillToBorderMethod) { draw_info->fill.red = ROUND_TO_QUANTUM(color.red + new_image->fuzz + 1); draw_info->fill.green = color.green; draw_info->fill.blue = color.blue; } (void) ColorFloodfillImage(new_image, draw_info, color, x, y, method); (void) DestroyDrawInfo(draw_info); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image#threshold(threshold) Purpose: changes the value of individual pixels based on the intensity of each pixel compared to threshold. The result is a high-contrast, two color image. */ VALUE Image_threshold(VALUE self, VALUE threshold) { Image *image, *new_image; image = rm_check_destroyed(self); new_image = rm_clone_image(image); (void) ThresholdImage(new_image, NUM2DBL(threshold)); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* * Static: threshold_image * Purpose: call one of the xxxxThresholdImage methods */ static VALUE threshold_image( int argc, VALUE *argv, VALUE self, thresholder_t thresholder) { Image *image, *new_image; double red, green, blue, opacity; char ctarg[200]; image = rm_check_destroyed(self); switch (argc) { case 4: red = NUM2DBL(argv[0]); green = NUM2DBL(argv[1]); blue = NUM2DBL(argv[2]); opacity = NUM2DBL(argv[3]); sprintf(ctarg, "%f,%f,%f,%f", red, green, blue, opacity); break; case 3: red = NUM2DBL(argv[0]); green = NUM2DBL(argv[1]); blue = NUM2DBL(argv[2]); sprintf(ctarg, "%f,%f,%f", red, green, blue); break; case 2: red = NUM2DBL(argv[0]); green = NUM2DBL(argv[1]); sprintf(ctarg, "%f,%f", red, green); break; case 1: red = NUM2DBL(argv[0]); sprintf(ctarg, "%f", red); break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 1 to 4)", argc); } new_image = rm_clone_image(image); (thresholder)(new_image, ctarg); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image#thumbnail(scale) or (cols, rows) Image#thumbnail!(scale) or (cols, rows) Purpose: fast resize for thumbnail images Returns: a resized copy of the input image Notes: Uses BoxFilter, blur attribute of input image */ static VALUE thumbnail(int bang, int argc, VALUE *argv, VALUE self) { Image *image, *new_image; unsigned long columns, rows; double scale, drows, dcols; ExceptionInfo exception; Data_Get_Struct(self, Image, image); switch (argc) { case 2: columns = NUM2ULONG(argv[0]); rows = NUM2ULONG(argv[1]); if (columns == 0 || rows == 0) { rb_raise(rb_eArgError, "invalid result dimension (%lu, %lu given)", columns, rows); } break; case 1: scale = NUM2DBL(argv[0]); if (scale < 0.0) { rb_raise(rb_eArgError, "invalid scale value (%g given)", scale); } drows = scale * image->rows + 0.5; dcols = scale * image->columns + 0.5; if (drows > (double)ULONG_MAX || dcols > (double)ULONG_MAX) { rb_raise(rb_eRangeError, "resized image too big"); } rows = (unsigned long) drows; columns = (unsigned long) dcols; break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 1 or 2)", argc); break; } GetExceptionInfo(&exception); new_image = ThumbnailImage(image, columns, rows, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); if (bang) { UPDATE_DATA_PTR(self, new_image); (void) rm_image_destroy(image); return self; } return rm_image_new(new_image); } VALUE Image_thumbnail(int argc, VALUE *argv, VALUE self) { (void) rm_check_destroyed(self); return thumbnail(False, argc, argv, self); } VALUE Image_thumbnail_bang(int argc, VALUE *argv, VALUE self) { (void) rm_check_frozen(self); return thumbnail(True, argc, argv, self); } /* Method: Image#ticks_per_second, ticks_per_second= Purpose: the ticks_per_second attribute accessors */ VALUE Image_ticks_per_second(VALUE self) { Image *image = rm_check_destroyed(self); return INT2FIX(image->ticks_per_second); } VALUE Image_ticks_per_second_eq(VALUE self, VALUE tps) { Image *image = rm_check_frozen(self); image->ticks_per_second = NUM2ULONG(tps); return self; } /* Method: Image#tint Purpose: Call TintImage Notes: Opacity values are percentages: 0.10 -> 10%. */ VALUE Image_tint(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; Pixel *tint; double red_pct_opaque, green_pct_opaque, blue_pct_opaque; double alpha_pct_opaque = 1.0; char opacity[50]; ExceptionInfo exception; image = rm_check_destroyed(self); switch (argc) { case 2: red_pct_opaque = NUM2DBL(argv[1]); green_pct_opaque = blue_pct_opaque = red_pct_opaque; break; case 3: red_pct_opaque = NUM2DBL(argv[1]); green_pct_opaque = NUM2DBL(argv[2]); blue_pct_opaque = red_pct_opaque; break; case 4: red_pct_opaque = NUM2DBL(argv[1]); green_pct_opaque = NUM2DBL(argv[2]); blue_pct_opaque = NUM2DBL(argv[3]); break; case 5: red_pct_opaque = NUM2DBL(argv[1]); green_pct_opaque = NUM2DBL(argv[2]); blue_pct_opaque = NUM2DBL(argv[3]); alpha_pct_opaque = NUM2DBL(argv[4]); break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 2 to 5)", argc); break; } if (red_pct_opaque < 0.0 || green_pct_opaque < 0.0 || blue_pct_opaque < 0.0 || alpha_pct_opaque < 0.0) { rb_raise(rb_eArgError, "opacity percentages must be non-negative."); } #if defined(HAVE_SNPRINTF) snprintf(opacity, sizeof(opacity), #else sprintf(opacity, #endif "%g,%g,%g,%g", red_pct_opaque*100.0, green_pct_opaque*100.0 , blue_pct_opaque*100.0, alpha_pct_opaque*100.0); Data_Get_Struct(argv[0], Pixel, tint); GetExceptionInfo(&exception); new_image = TintImage(image, opacity, *tint, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#to_blob Purpose: Return a "blob" (a String) from the image Notes: The magick member of the Image structure determines the format of the returned blob (GIG, JPEG, PNG, etc.) */ VALUE Image_to_blob(VALUE self) { Image *image; Info *info; const MagickInfo *magick_info; volatile VALUE info_obj; volatile VALUE blob_str; void *blob = NULL; size_t length = 2048; // Do what Magick++ does ExceptionInfo exception; // The user can specify the depth (8 or 16, if the format supports // both) and the image format by setting the depth and format // values in the info parm block. info_obj = rm_info_new(); Data_Get_Struct(info_obj, Info, info); image = rm_check_destroyed(self); // Copy the depth and magick fields to the Image if (info->depth != 0) { (void) SetImageDepth(image, info->depth); rm_check_image_exception(image, RetainOnError); } GetExceptionInfo(&exception); if (*info->magick) { (void) SetImageInfo(info, MagickTrue, &exception); CHECK_EXCEPTION() if (*info->magick == '\0') { return Qnil; } strncpy(image->magick, info->magick, sizeof(info->magick)-1); } // Fix #2844 - libjpeg exits when image is 0x0 magick_info = GetMagickInfo(image->magick, &exception); CHECK_EXCEPTION() if (magick_info) { if ( (!rm_strcasecmp(magick_info->name, "JPEG") || !rm_strcasecmp(magick_info->name, "JPG")) && (image->rows == 0 || image->columns == 0)) { rb_raise(rb_eRuntimeError, "Can't convert %lux%lu %.4s image to a blob" , image->columns, image->rows, magick_info->name); } } blob = ImageToBlob(info, image, &length, &exception); CHECK_EXCEPTION() (void) DestroyExceptionInfo(&exception); if (length == 0 || !blob) { return Qnil; } blob_str = rb_str_new(blob, length); magick_free((void*)blob); return blob_str; } /* Method: Image#to_color Purpose: Return a color name for the color intensity specified by the Magick::Pixel argument. Notes: Respects depth and matte attributes */ VALUE Image_to_color(VALUE self, VALUE pixel_arg) { Image *image; Pixel *pixel; ExceptionInfo exception; char name[MaxTextExtent]; image = rm_check_destroyed(self); Data_Get_Struct(pixel_arg, Pixel, pixel); GetExceptionInfo(&exception); // QueryColorname returns False if the color represented by the PixelPacket // doesn't have a "real" name, just a sequence of hex digits. We don't care // about that. name[0] = '\0'; (void) QueryColorname(image, pixel, AllCompliance, name, &exception); CHECK_EXCEPTION() (void) DestroyExceptionInfo(&exception); return rb_str_new2(name); } /* Method: Image#total_colors Purpose: alias for Image#number_colors Notes: This used to be a direct reference to the `total_colors' field in Image but that field is not reliable. */ VALUE Image_total_colors(VALUE self) { return Image_number_colors(self); } /* Method: Image#transparent(color-name<, opacity>) Image#transparent(pixel<, opacity>) Purpose: Call TransparentImage Notes: Can use Magick::OpaqueOpacity or Magick::TransparentOpacity, or any value >= 0 && <= QuantumRange. The default is Magick::TransparentOpacity. Use Image#fuzz= to define the tolerance level. */ VALUE Image_transparent(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; MagickPixelPacket color; Quantum opacity = TransparentOpacity; image = rm_check_destroyed(self); switch (argc) { case 2: opacity = APP2QUANTUM(argv[1]); case 1: Color_to_MagickPixelPacket(image, &color, argv[0]); break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 1 or 2)", argc); break; } new_image = rm_clone_image(image); (void) PaintTransparentImage(new_image, &color, opacity); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image#transparent_color Purpose: Return the name of the transparent color as a String. */ VALUE Image_transparent_color(VALUE self) { Image *image = rm_check_destroyed(self); return PixelPacket_to_Color_Name(image, &image->transparent_color); } /* Method: Image#transparent_color= Purpose: Set the the transparent color to the specified color spec. */ VALUE Image_transparent_color_eq(VALUE self, VALUE color) { Image *image = rm_check_frozen(self); Color_to_PixelPacket(&image->transparent_color, color); return self; } /* * Method: Image#transpose * Image#transpose! * Purpose: Call TransposeImage */ VALUE Image_transpose(VALUE self) { (void) rm_check_destroyed(self); return crisscross(False, self, TransposeImage); } VALUE Image_transpose_bang(VALUE self) { (void) rm_check_frozen(self); return crisscross(True, self, TransposeImage); } /* * Method: Image#transverse * Image#transverse! * Purpose: Call TransverseImage */ VALUE Image_transverse(VALUE self) { (void) rm_check_destroyed(self); return crisscross(False, self, TransverseImage); } VALUE Image_transverse_bang(VALUE self) { (void) rm_check_frozen(self); return crisscross(True, self, TransverseImage); } /* * Method: Image#trim, Image#trim! * Purpose: convenience front-end to CropImage * Notes: respects fuzz attribute */ static VALUE trimmer(int bang, int argc, VALUE *argv, VALUE self) { Image *image, *new_image; RectangleInfo geometry; ExceptionInfo exception; int reset_page = 0; switch (argc) { case 1: reset_page = RTEST(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (expecting 0 or 1, got %d)", argc); break; } Data_Get_Struct(self, Image, image); GetExceptionInfo(&exception); geometry = GetImageBoundingBox(image, &exception); CHECK_EXCEPTION() new_image = CropImage(image, &geometry, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); if (reset_page) { #if defined(HAVE_RESETIMAGEPAGE) ResetImagePage(new_image, "0x0+0+0"); #else new_image->page.x = new_image->page.y = 0L; new_image->page.width = new_image->page.height = 0UL; #endif } if (bang) { UPDATE_DATA_PTR(self, new_image); (void) rm_image_destroy(image); return self; } return rm_image_new(new_image); } VALUE Image_trim(int argc, VALUE *argv, VALUE self) { (void) rm_check_destroyed(self); return trimmer(False, argc, argv, self); } VALUE Image_trim_bang(int argc, VALUE *argv, VALUE self) { (void) rm_check_frozen(self); return trimmer(True, argc, argv, self); } /* Method: Image#gravity, gravity= Purpose: Get/set the image gravity attribute */ VALUE Image_gravity(VALUE self) { Image *image = rm_check_destroyed(self); return GravityType_new(image->gravity); } VALUE Image_gravity_eq(VALUE self, VALUE gravity) { Image *image = rm_check_frozen(self); VALUE_TO_ENUM(gravity, image->gravity, GravityType); return gravity; } /* Method: Image#image_type Purpose: Call GetImageType to get the image type */ VALUE Image_image_type(VALUE self) { Image *image; ImageType type; ExceptionInfo exception; image = rm_check_destroyed(self); GetExceptionInfo(&exception); type = GetImageType(image, &exception); CHECK_EXCEPTION() (void) DestroyExceptionInfo(&exception); return ImageType_new(type); } /* Method: Image#unique_colors Purpose: Call UniqueImageColors */ VALUE Image_unique_colors(VALUE self) { Image *image, *new_image; ExceptionInfo exception; image = rm_check_destroyed(self); GetExceptionInfo(&exception); new_image = UniqueImageColors(image, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#units Purpose: Get the resolution type field */ VALUE Image_units(VALUE self) { Image *image = rm_check_destroyed(self); return ResolutionType_new(image->units); } /* Method: Image#units= Purpose: Set the resolution type field */ VALUE Image_units_eq( VALUE self, VALUE restype) { ResolutionType units; Image *image = rm_check_frozen(self); VALUE_TO_ENUM(restype, units, ResolutionType); if (image->units != units) { switch (image->units) { case PixelsPerInchResolution: if (units == PixelsPerCentimeterResolution) { image->x_resolution /= 2.54; image->y_resolution /= 2.54; } break; case PixelsPerCentimeterResolution: if (units == PixelsPerInchResolution) { image->x_resolution *= 2.54; image->y_resolution *= 2.54; } break; default: // UndefinedResolution image->x_resolution = 0.0; image->y_resolution = 0.0; break; } image->units = units; } return self; } /* Method: Image#unsharp_mask(radius=0.0, sigma=1.0, amount=1.0, threshold=0.05) Purpose: sharpens an image. "amount" is the percentage of the difference between the original and the blur image that is added back into the original. "threshold" is the threshold in pixels needed to apply the diffence amount. */ static void unsharp_mask_args( int argc, VALUE *argv, double *radius, double *sigma, double *amount, double *threshold) { switch (argc) { case 4: *threshold = NUM2DBL(argv[3]); if (*threshold < 0.0) { rb_raise(rb_eArgError, "threshold must be >= 0.0"); } case 3: *amount = NUM2DBL(argv[2]); if (*amount <= 0.0) { rb_raise(rb_eArgError, "amount must be > 0.0"); } case 2: *sigma = NUM2DBL(argv[1]); if (*sigma == 0.0) { rb_raise(rb_eArgError, "sigma must be != 0.0"); } case 1: *radius = NUM2DBL(argv[0]); if (*radius < 0.0) { rb_raise(rb_eArgError, "radius must be >= 0.0"); } case 0: break; // This case can't occur if we're called from Image_unsharp_mask_channel // because it has already raised an exception for the the argc > 4 case. default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 to 4)", argc); } } VALUE Image_unsharp_mask(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; double radius = 0.0, sigma = 1.0, amount = 1.0, threshold = 0.05; ExceptionInfo exception; image = rm_check_destroyed(self); unsharp_mask_args(argc, argv, &radius, &sigma, &amount, &threshold); GetExceptionInfo(&exception); new_image = UnsharpMaskImage(image, radius, sigma, amount, threshold, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#unsharp_mask_channel(radius, sigma, amount,threshold, channel=AllChannels) Purpose: Call UnsharpMaskImageChannel */ VALUE Image_unsharp_mask_channel(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; ChannelType channels; double radius = 0.0, sigma = 1.0, amount = 1.0, threshold = 0.05; ExceptionInfo exception; image = rm_check_destroyed(self); channels = extract_channels(&argc, argv); if (argc > 4) { raise_ChannelType_error(argv[argc-1]); } unsharp_mask_args(argc, argv, &radius, &sigma, &amount, &threshold); GetExceptionInfo(&exception); new_image = UnsharpMaskImageChannel(image, channels, radius, sigma, amount , threshold, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#vignette(horz_radius, vert_radius, radius, sigma); Purpose: soften the edges of an image Notes: The outer edges of the image are replaced by the background color. */ VALUE Image_vignette(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; long horz_radius, vert_radius; double radius = 0.0, sigma = 10.0; ExceptionInfo exception; image = rm_check_destroyed(self); horz_radius = (long)(image->columns * 0.10 + 0.5); vert_radius = (long)(image->rows * 0.10 + 0.5); switch (argc) { case 4: sigma = NUM2DBL(argv[3]); case 3: radius = NUM2DBL(argv[2]); case 2: vert_radius = NUM2INT(argv[1]); case 1: horz_radius = NUM2INT(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 to 4)", argc); break; } GetExceptionInfo(&exception); new_image = VignetteImage(image, radius, sigma, horz_radius, vert_radius, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#virtual_pixel_method Purpose: get the VirtualPixelMethod for the image */ VALUE Image_virtual_pixel_method(VALUE self) { Image *image; VirtualPixelMethod vpm; image = rm_check_destroyed(self); vpm = GetImageVirtualPixelMethod(image); rm_check_image_exception(image, RetainOnError); return VirtualPixelMethod_new(vpm); } /* Method: Image#virtual_pixel_method= Purpose: set the virtual pixel method for the image */ VALUE Image_virtual_pixel_method_eq(VALUE self, VALUE method) { Image *image; VirtualPixelMethod vpm; image = rm_check_frozen(self); VALUE_TO_ENUM(method, vpm, VirtualPixelMethod); (void) SetImageVirtualPixelMethod(image, vpm); rm_check_image_exception(image, RetainOnError); return self; } /* Method: Image#watermark(mark, brightness=100.0, saturation=100.0 , [gravity,] x_off=0, y_off=0) Purpose: add a watermark to an image Notes: x_off and y_off can be negative, which means measure from the right/bottom of the target image. */ VALUE Image_watermark(int argc, VALUE *argv, VALUE self) { Image *image, *overlay, *new_image; double src_percent = 100.0, dst_percent = 100.0; long x_offset = 0L, y_offset = 0L; char geometry[20]; volatile VALUE ovly; image = rm_check_destroyed(self); if (argc < 1) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 2 to 6)", argc); } ovly = ImageList_cur_image(argv[0]); overlay = rm_check_destroyed(ovly); if (argc > 3) { get_composite_offsets(argc-3, &argv[3], image, overlay, &x_offset, &y_offset); // There must be 3 arguments left argc = 3; } switch (argc) { case 3: dst_percent = rm_percentage(argv[2]) * 100.0; case 2: src_percent = rm_percentage(argv[1]) * 100.0; case 1: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 2 to 6)", argc); break; } blend_geometry(geometry, sizeof(geometry), src_percent, dst_percent); (void) CloneString(&overlay->geometry, geometry); new_image = rm_clone_image(image); (void) CompositeImage(new_image, ModulateCompositeOp, overlay, x_offset, y_offset); rm_check_image_exception(new_image, DestroyOnError); return rm_image_new(new_image); } /* Method: Image#wave(amplitude=25.0, wavelength=150.0) Purpose: creates a "ripple" effect in the image by shifting the pixels vertically along a sine wave whose amplitude and wavelength is specified by the given parameters. Returns: self */ VALUE Image_wave(int argc, VALUE *argv, VALUE self) { Image *image, *new_image; double amplitude = 25.0, wavelength = 150.0; ExceptionInfo exception; image = rm_check_destroyed(self); switch (argc) { case 2: wavelength = NUM2DBL(argv[1]); case 1: amplitude = NUM2DBL(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 to 2)", argc); break; } GetExceptionInfo(&exception); new_image = WaveImage(image, amplitude, wavelength, &exception); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); return rm_image_new(new_image); } /* Method: Image#wet_floor(initial, rate) Purpose: Construct a "wet floor" reflection. Notes: `initial' is a number between 0 and 1, inclusive, that represents the initial level of transparency. Smaller numbers are less transparent than larger numbers. 0 is fully opaque. 1.0 is fully transparent. The default is 0.5. `rate' is the rate at which the initial level of transparency changes to complete transparency. The default is 1.0. Values larger than 1.0 cause the change to occur more rapidly. The resulting reflection will be shorter. Values smaller than 1.0 cause the change to occur less rapidly. The resulting reflection will be taller. If the rate is exactly 0 then the amount of transparency doesn't change at all. Notes: http://en.wikipedia.org/wiki/Wet_floor_effect */ VALUE Image_wet_floor(int argc, VALUE *argv, VALUE self) { Image *image, *reflection, *flip_image; PixelPacket *p, *q; RectangleInfo geometry; long x, y, max_rows; double initial = 0.5; double rate = 1.0; double opacity, step; char *func; MagickBooleanType okay; ExceptionInfo exception; image = rm_check_destroyed(self); switch (argc) { case 2: rate = NUM2DBL(argv[1]); case 1: initial = NUM2DBL(argv[0]); case 0: break; default: rb_raise(rb_eArgError, "wrong number of arguments (%d for 0 to 2)", argc); break; } if (initial < 0.0 || initial > 1.0) { rb_raise(rb_eArgError, "Initial transparency must be in the range 0.0-1.0 (%g)", initial); } if (rate < 0.0) { rb_raise(rb_eArgError, "Transparency change rate must be >= 0.0 (%g)", rate); } initial *= TransparentOpacity; // The number of rows in which to transition from the initial level of // transparency to complete transparency. rate == 0.0 -> no change. if (rate > 0.0) { max_rows = (long)((double)image->rows) / (3.0 * rate); max_rows = (long)min((unsigned long)max_rows, image->rows); step = (TransparentOpacity - initial) / max_rows; } else { max_rows = (long)image->rows; step = 0.0; } GetExceptionInfo(&exception); flip_image = FlipImage(image, &exception); CHECK_EXCEPTION(); geometry.x = 0; geometry.y = 0; geometry.width = image->columns; geometry.height = max_rows; reflection = CropImage(flip_image, &geometry, &exception); DestroyImage(flip_image); CHECK_EXCEPTION(); (void) SetImageStorageClass(reflection, DirectClass); rm_check_image_exception(reflection, DestroyOnError); reflection->matte = MagickTrue; opacity = initial; for (y = 0; y < max_rows; y++) { if (opacity > TransparentOpacity) { opacity = TransparentOpacity; } p = (PixelPacket *)AcquireImagePixels(reflection, 0, y, image->columns, 1, &exception); rm_check_exception(&exception, reflection, RetainOnError); q = SetImagePixels(reflection, 0, y, image->columns, 1); rm_check_image_exception(reflection, DestroyOnError); if (!q) { func = "SetImagePixels"; goto error; } for (x = 0; x < (long) image->columns; x++) { q[x] = p[x]; // Never make a pixel *less* transparent than it already is. q[x].opacity = max(q[x].opacity, (Quantum)opacity); } okay = SyncImagePixels(reflection); rm_check_image_exception(reflection, DestroyOnError); if (!okay) { func = "SyncImagePixels"; goto error; } opacity += step; } (void) DestroyExceptionInfo(&exception); return rm_image_new(reflection); error: (void) DestroyExceptionInfo(&exception); (void) DestroyImage(reflection); rb_raise(rb_eRuntimeError, "%s failed on row %lu", func, y); return(VALUE)0; } /* * Method: Image#white_threshold(red_channel [, green_channel * [, blue_channel [, opacity_channel]]]); * Purpose: Call WhiteThresholdImage */ VALUE Image_white_threshold(int argc, VALUE *argv, VALUE self) { return threshold_image(argc, argv, self, WhiteThresholdImage); } /* Method: Image#write(filename) Purpose: Write the image to the file. Returns: self */ VALUE Image_write(VALUE self, VALUE file) { Image *image; Info *info; volatile VALUE info_obj; char *filename; long filename_l; ExceptionInfo exception; image = rm_check_destroyed(self); info_obj = rm_info_new(); Data_Get_Struct(info_obj, Info, info); if (TYPE(file) == T_FILE) { OpenFile *fptr; // Ensure file is open - raise error if not GetOpenFile(file, fptr); rb_io_check_writable(fptr); SetImageInfoFile(info, GetWriteFile(fptr)); } else { // Copy the filename to the Info and to the Image, then call // SetImageInfo. (Ref: ImageMagick's utilities/convert.c.) // Convert arg to string. If an exception occurs raise an error condition. file = rb_rescue(rb_String, file, file_arg_rescue, file); filename = rm_str2cstr(file, &filename_l); filename_l = min(filename_l, MaxTextExtent-1); memcpy(info->filename, filename, (size_t)filename_l); info->filename[filename_l] = '\0'; strcpy(image->filename, info->filename); GetExceptionInfo(&exception); (void) SetImageInfo(info, MagickTrue, &exception); CHECK_EXCEPTION() (void) DestroyExceptionInfo(&exception); if (*info->magick == '\0') { return Qnil; } SetImageInfoFile(info, NULL); } info->adjoin = MagickFalse; (void) WriteImage(info, image); rm_check_image_exception(image, RetainOnError); return self; } DEF_ATTR_ACCESSOR(Image, x_resolution, dbl) DEF_ATTR_ACCESSOR(Image, y_resolution, dbl) /* Static: cropper Purpose: determine if the argument list is x, y, width, height or gravity, width, height or gravity, x, y, width, height If the 2nd or 3rd, compute new x, y values. The argument list can have a trailing true, false, or nil argument. If present and true, after cropping reset the page fields in the image. Call xform_image to do the cropping. */ static VALUE cropper(int bang, int argc, VALUE *argv, VALUE self) { volatile VALUE x, y, width, height; unsigned long nx = 0, ny = 0; unsigned long columns, rows; int reset_page = 0; GravityType gravity; MagickEnum *magick_enum; Image *image; VALUE cropped; // Check for a "reset page" trailing argument. if (argc >= 1) { switch (TYPE(argv[argc-1])) { case T_TRUE: reset_page = 1; // fall thru case T_FALSE: case T_NIL: argc -= 1; default: break; } } switch (argc) { case 5: Data_Get_Struct(self, Image, image); VALUE_TO_ENUM(argv[0], gravity, GravityType); x = argv[1]; y = argv[2]; width = argv[3]; height = argv[4]; nx = NUM2ULONG(x); ny = NUM2ULONG(y); columns = NUM2ULONG(width); rows = NUM2ULONG(height); switch (gravity) { case NorthEastGravity: case EastGravity: case SouthEastGravity: nx = image->columns - columns - nx; break; case NorthGravity: case SouthGravity: case CenterGravity: case StaticGravity: nx += image->columns/2 - columns/2; break; default: break; } switch (gravity) { case SouthWestGravity: case SouthGravity: case SouthEastGravity: ny = image->rows - rows - ny; break; case EastGravity: case WestGravity: case CenterGravity: case StaticGravity: ny += image->rows/2 - rows/2; break; case NorthEastGravity: case NorthGravity: // Don't let these run into the default case break; default: Data_Get_Struct(argv[0], MagickEnum, magick_enum); rb_warning("gravity type `%s' has no effect", rb_id2name(magick_enum->id)); break; } x = ULONG2NUM(nx); y = ULONG2NUM(ny); break; case 4: x = argv[0]; y = argv[1]; width = argv[2]; height = argv[3]; break; case 3: // Convert the width & height arguments to unsigned longs. // Compute the x & y offsets from the gravity and then // convert them to VALUEs. VALUE_TO_ENUM(argv[0], gravity, GravityType); width = argv[1]; height = argv[2]; columns = NUM2ULONG(width); rows = NUM2ULONG(height); Data_Get_Struct(self, Image, image); switch (gravity) { case ForgetGravity: case NorthWestGravity: nx = 0; ny = 0; break; case NorthGravity: nx = (image->columns - columns) / 2; ny = 0; break; case NorthEastGravity: nx = image->columns - columns; ny = 0; break; case WestGravity: nx = 0; ny = (image->rows - rows) / 2; break; case EastGravity: nx = image->columns - columns; ny = (image->rows - rows) / 2; break; case SouthWestGravity: nx = 0; ny = image->rows - rows; break; case SouthGravity: nx = (image->columns - columns) / 2; ny = image->rows - rows; break; case SouthEastGravity: nx = image->columns - columns; ny = image->rows - rows; break; case StaticGravity: case CenterGravity: nx = (image->columns - columns) / 2; ny = (image->rows - rows) / 2; break; } x = ULONG2NUM(nx); y = ULONG2NUM(ny); break; default: if (reset_page) { rb_raise(rb_eArgError, "wrong number of arguments (%d for 4, 5, or 6)", argc); } else { rb_raise(rb_eArgError, "wrong number of arguments (%d for 3, 4, or 5)", argc); } break; } cropped = xform_image(bang, self, x, y, width, height, CropImage); if (reset_page) { Data_Get_Struct(cropped, Image, image); #if defined(HAVE_RESETIMAGEPAGE) ResetImagePage(image, "0x0+0+0"); #else image->page.x = image->page.y = 0L; image->page.width = image->page.height = 0UL; #endif } return cropped; } /* Static: xform_image Purpose: call one of the image transformation functions Returns: a new image, or transformed self */ static VALUE xform_image( int bang, VALUE self, VALUE x, VALUE y, VALUE width, VALUE height, xformer_t xformer) { Image *image, *new_image; RectangleInfo rect; ExceptionInfo exception; Data_Get_Struct(self, Image, image); rect.x = NUM2LONG(x); rect.y = NUM2LONG(y); rect.width = NUM2ULONG(width); rect.height = NUM2ULONG(height); GetExceptionInfo(&exception); new_image = (xformer)(image, &rect, &exception); // An exception can occur in either the old or the new images rm_check_image_exception(image, RetainOnError); rm_check_exception(&exception, new_image, DestroyOnError); (void) DestroyExceptionInfo(&exception); rm_ensure_result(new_image); if (bang) { UPDATE_DATA_PTR(self, new_image); (void) rm_image_destroy(image); return self; } return rm_image_new(new_image); } /* Extern: extract_channels Purpose: Remove all the ChannelType arguments from the end of the argument list. Returns: A ChannelType value suitable for passing into an xMagick function. Returns DefaultChannels if no channel arguments were found. Returns the number of remaining arguments. */ ChannelType extract_channels( int *argc, VALUE *argv) { volatile VALUE arg; ChannelType channels, ch_arg; channels = 0; while (*argc > 0) { arg = argv[(*argc)-1]; // Stop when you find a non-ChannelType argument if (CLASS_OF(arg) != Class_ChannelType) { break; } VALUE_TO_ENUM(arg, ch_arg, ChannelType); channels |= ch_arg; *argc -= 1; } if (channels == 0) { channels = DefaultChannels; } return channels; } /* Extern: raise_ChannelType_error Purpose: raise TypeError when an non-ChannelType object is unexpectedly encountered */ void raise_ChannelType_error(VALUE arg) { rb_raise(rb_eTypeError, "argument needs to be a ChannelType (%s given)" , rb_class2name(CLASS_OF(arg))); } /* Static: call_trace_proc Purpose: If Magick.trace_proc is not nil, build an argument list and call the proc. */ static void call_trace_proc(Image *image, char *which) { volatile VALUE trace; volatile VALUE trace_args[4]; if (rb_ivar_defined(Module_Magick, rm_ID_trace_proc) == Qtrue) { trace = rb_ivar_get(Module_Magick, rm_ID_trace_proc); if (!NIL_P(trace)) { // Maybe the stack won't get extended until we need the space. char buffer[MaxTextExtent]; int n; trace_args[0] = ID2SYM(rb_intern(which)); build_inspect_string(image, buffer, sizeof(buffer)); trace_args[1] = rb_str_new2(buffer); #if SIZEOF_IMAGE_ > 4 #if HAVE_TYPE_UNSIGNED_LONG_LONG n = sprintf(buffer, "%016llx", (unsigned long long)image); #elif HAVE_TYPE_UINT64_T n = sprintf(buffer, "%016llx", (uint64_t)image); #elif HAVE_TYPE_UINTMAX_T n = sprintf(buffer, "%016llx", (uintmax_t)image); #elif HAVE_TYPE___INT64 n = sprintf(buffer, "%016llx", (__int64)image); #elif SIZEOF_UNSIGNED_LONG == 8 n = sprintf(buffer, "%016lx", (unsigned long)image); #else #error "No 64-bit type detected." #endif #else n = sprintf(buffer, "%08lx", (unsigned long)image); #endif buffer[n] = '\0'; trace_args[2] = rb_str_new2(buffer); trace_args[3] = ID2SYM(THIS_FUNC()); (void) rb_funcall2(trace, rm_ID_call, 4, (VALUE *)trace_args); } } } /* External: rm_trace_creation Purpose: should be obvious */ void rm_trace_creation(Image *image) { call_trace_proc(image, "c"); } /* External: rm_image_destroy Purpose: Called from GC when all references to the image have gone out of scope. Notes: A NULL Image pointer indicates that the image has already been destroyed by Image#destroy! */ void rm_image_destroy(void *img) { Image *image = (Image *)img; if (img != NULL) { call_trace_proc(image, "d"); (void) DestroyImage(image); } }