//! [![github]](https://github.com/dtolnay/itoa) [![crates-io]](https://crates.io/crates/itoa) [![docs-rs]](https://docs.rs/itoa)
//!
//! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
//! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
//! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
//!
//!
//!
//! This crate provides a fast conversion of integer primitives to decimal
//! strings. The implementation comes straight from [libcore] but avoids the
//! performance penalty of going through [`core::fmt::Formatter`].
//!
//! See also [`ryu`] for printing floating point primitives.
//!
//! [libcore]: https://github.com/rust-lang/rust/blob/b8214dc6c6fc20d0a660fb5700dca9ebf51ebe89/src/libcore/fmt/num.rs#L201-L254
//! [`core::fmt::Formatter`]: https://doc.rust-lang.org/std/fmt/struct.Formatter.html
//! [`ryu`]: https://github.com/dtolnay/ryu
//!
//! # Example
//!
//! ```
//! fn main() {
//! let mut buffer = itoa::Buffer::new();
//! let printed = buffer.format(128u64);
//! assert_eq!(printed, "128");
//! }
//! ```
//!
//! # Performance (lower is better)
//!
//! ![performance](https://raw.githubusercontent.com/dtolnay/itoa/master/performance.png)
#![doc(html_root_url = "https://docs.rs/itoa/1.0.14")]
#![no_std]
#![allow(
clippy::cast_lossless,
clippy::cast_possible_truncation,
clippy::cast_possible_wrap,
clippy::cast_sign_loss,
clippy::expl_impl_clone_on_copy,
clippy::must_use_candidate,
clippy::needless_doctest_main,
clippy::unreadable_literal
)]
mod udiv128;
use core::hint;
use core::mem::MaybeUninit;
use core::{ptr, slice, str};
#[cfg(feature = "no-panic")]
use no_panic::no_panic;
/// A correctly sized stack allocation for the formatted integer to be written
/// into.
///
/// # Example
///
/// ```
/// let mut buffer = itoa::Buffer::new();
/// let printed = buffer.format(1234);
/// assert_eq!(printed, "1234");
/// ```
pub struct Buffer {
bytes: [MaybeUninit; i128::MAX_STR_LEN],
}
impl Default for Buffer {
#[inline]
fn default() -> Buffer {
Buffer::new()
}
}
impl Copy for Buffer {}
impl Clone for Buffer {
#[inline]
#[allow(clippy::non_canonical_clone_impl)] // false positive https://github.com/rust-lang/rust-clippy/issues/11072
fn clone(&self) -> Self {
Buffer::new()
}
}
impl Buffer {
/// This is a cheap operation; you don't need to worry about reusing buffers
/// for efficiency.
#[inline]
#[cfg_attr(feature = "no-panic", no_panic)]
pub fn new() -> Buffer {
let bytes = [MaybeUninit::::uninit(); i128::MAX_STR_LEN];
Buffer { bytes }
}
/// Print an integer into this buffer and return a reference to its string
/// representation within the buffer.
#[cfg_attr(feature = "no-panic", no_panic)]
pub fn format(&mut self, i: I) -> &str {
let string = i.write(unsafe {
&mut *(&mut self.bytes as *mut [MaybeUninit; i128::MAX_STR_LEN]
as *mut ::Buffer)
});
if string.len() > I::MAX_STR_LEN {
unsafe { hint::unreachable_unchecked() };
}
string
}
}
/// An integer that can be written into an [`itoa::Buffer`][Buffer].
///
/// This trait is sealed and cannot be implemented for types outside of itoa.
pub trait Integer: private::Sealed {
/// The maximum length of string that formatting an integer of this type can
/// produce on the current target platform.
const MAX_STR_LEN: usize;
}
// Seal to prevent downstream implementations of the Integer trait.
mod private {
#[doc(hidden)]
pub trait Sealed: Copy {
#[doc(hidden)]
type Buffer: 'static;
fn write(self, buf: &mut Self::Buffer) -> &str;
}
}
const DEC_DIGITS_LUT: [u8; 200] = *b"\
0001020304050607080910111213141516171819\
2021222324252627282930313233343536373839\
4041424344454647484950515253545556575859\
6061626364656667686970717273747576777879\
8081828384858687888990919293949596979899";
// Adaptation of the original implementation at
// https://github.com/rust-lang/rust/blob/b8214dc6c6fc20d0a660fb5700dca9ebf51ebe89/src/libcore/fmt/num.rs#L188-L266
macro_rules! impl_Integer {
($t:ty[len = $max_len:expr] as $large_unsigned:ty) => {
impl Integer for $t {
const MAX_STR_LEN: usize = $max_len;
}
impl private::Sealed for $t {
type Buffer = [MaybeUninit; $max_len];
#[allow(unused_comparisons)]
#[inline]
#[cfg_attr(feature = "no-panic", no_panic)]
fn write(self, buf: &mut [MaybeUninit; $max_len]) -> &str {
let is_nonnegative = self >= 0;
let mut n = if is_nonnegative {
self as $large_unsigned
} else {
// Convert negative number to positive by summing 1 to its two's complement.
(!(self as $large_unsigned)).wrapping_add(1)
};
let mut curr = buf.len();
let buf_ptr = buf.as_mut_ptr() as *mut u8;
let lut_ptr = DEC_DIGITS_LUT.as_ptr();
// Render 4 digits at a time.
while n >= 10000 {
let rem = n % 10000;
n /= 10000;
let d1 = ((rem / 100) << 1) as usize;
let d2 = ((rem % 100) << 1) as usize;
curr -= 4;
unsafe {
ptr::copy_nonoverlapping(lut_ptr.add(d1), buf_ptr.add(curr), 2);
ptr::copy_nonoverlapping(lut_ptr.add(d2), buf_ptr.add(curr + 2), 2);
}
}
// Render 2 more digits, if >2 digits.
if n >= 100 {
let d1 = ((n % 100) << 1) as usize;
n /= 100;
curr -= 2;
unsafe {
ptr::copy_nonoverlapping(lut_ptr.add(d1), buf_ptr.add(curr), 2);
}
}
// Render last 1 or 2 digits.
if n < 10 {
curr -= 1;
unsafe {
*buf_ptr.add(curr) = (n as u8) + b'0';
}
} else {
let d1 = (n << 1) as usize;
curr -= 2;
unsafe {
ptr::copy_nonoverlapping(lut_ptr.add(d1), buf_ptr.add(curr), 2);
}
}
if !is_nonnegative {
curr -= 1;
unsafe {
*buf_ptr.add(curr) = b'-';
}
}
let len = buf.len() - curr;
let bytes = unsafe { slice::from_raw_parts(buf_ptr.add(curr), len) };
unsafe { str::from_utf8_unchecked(bytes) }
}
}
};
}
impl_Integer!(i8[len = 4] as u32);
impl_Integer!(u8[len = 3] as u32);
impl_Integer!(i16[len = 6] as u32);
impl_Integer!(u16[len = 5] as u32);
impl_Integer!(i32[len = 11] as u32);
impl_Integer!(u32[len = 10] as u32);
impl_Integer!(i64[len = 20] as u64);
impl_Integer!(u64[len = 20] as u64);
macro_rules! impl_Integer_size {
($t:ty as $primitive:ident #[cfg(target_pointer_width = $width:literal)]) => {
#[cfg(target_pointer_width = $width)]
impl Integer for $t {
const MAX_STR_LEN: usize = <$primitive as Integer>::MAX_STR_LEN;
}
#[cfg(target_pointer_width = $width)]
impl private::Sealed for $t {
type Buffer = <$primitive as private::Sealed>::Buffer;
#[inline]
#[cfg_attr(feature = "no-panic", no_panic)]
fn write(self, buf: &mut Self::Buffer) -> &str {
(self as $primitive).write(buf)
}
}
};
}
impl_Integer_size!(isize as i16 #[cfg(target_pointer_width = "16")]);
impl_Integer_size!(usize as u16 #[cfg(target_pointer_width = "16")]);
impl_Integer_size!(isize as i32 #[cfg(target_pointer_width = "32")]);
impl_Integer_size!(usize as u32 #[cfg(target_pointer_width = "32")]);
impl_Integer_size!(isize as i64 #[cfg(target_pointer_width = "64")]);
impl_Integer_size!(usize as u64 #[cfg(target_pointer_width = "64")]);
macro_rules! impl_Integer128 {
($t:ty[len = $max_len:expr]) => {
impl Integer for $t {
const MAX_STR_LEN: usize = $max_len;
}
impl private::Sealed for $t {
type Buffer = [MaybeUninit; $max_len];
#[allow(unused_comparisons)]
#[inline]
#[cfg_attr(feature = "no-panic", no_panic)]
fn write(self, buf: &mut [MaybeUninit; $max_len]) -> &str {
let is_nonnegative = self >= 0;
let n = if is_nonnegative {
self as u128
} else {
// Convert negative number to positive by summing 1 to its two's complement.
(!(self as u128)).wrapping_add(1)
};
let mut curr = buf.len();
let buf_ptr = buf.as_mut_ptr() as *mut u8;
// Divide by 10^19 which is the highest power less than 2^64.
let (n, rem) = udiv128::udivmod_1e19(n);
let buf1 = unsafe {
buf_ptr.add(curr - u64::MAX_STR_LEN) as *mut [MaybeUninit; u64::MAX_STR_LEN]
};
curr -= rem.write(unsafe { &mut *buf1 }).len();
if n != 0 {
// Memset the base10 leading zeros of rem.
let target = buf.len() - 19;
unsafe {
ptr::write_bytes(buf_ptr.add(target), b'0', curr - target);
}
curr = target;
// Divide by 10^19 again.
let (n, rem) = udiv128::udivmod_1e19(n);
let buf2 = unsafe {
buf_ptr.add(curr - u64::MAX_STR_LEN)
as *mut [MaybeUninit; u64::MAX_STR_LEN]
};
curr -= rem.write(unsafe { &mut *buf2 }).len();
if n != 0 {
// Memset the leading zeros.
let target = buf.len() - 38;
unsafe {
ptr::write_bytes(buf_ptr.add(target), b'0', curr - target);
}
curr = target;
// There is at most one digit left
// because u128::MAX / 10^19 / 10^19 is 3.
curr -= 1;
unsafe {
*buf_ptr.add(curr) = (n as u8) + b'0';
}
}
}
if !is_nonnegative {
curr -= 1;
unsafe {
*buf_ptr.add(curr) = b'-';
}
}
let len = buf.len() - curr;
let bytes = unsafe { slice::from_raw_parts(buf_ptr.add(curr), len) };
unsafe { str::from_utf8_unchecked(bytes) }
}
}
};
}
impl_Integer128!(i128[len = 40]);
impl_Integer128!(u128[len = 39]);