# frozen_string_literal: true require 'rumale/base/evaluator' require 'rumale/evaluation_measure/precision_recall' module Rumale # This module consists of the classes for model evaluation. module EvaluationMeasure # Recall is a class that calculates the recall of the predicted labels. # # @example # require 'rumale/evaluation_measure/recall' # # evaluator = Rumale::EvaluationMeasure::Recall.new # puts evaluator.score(ground_truth, predicted) class Recall include ::Rumale::Base::Evaluator include ::Rumale::EvaluationMeasure::PrecisionRecall # Return the average type for calculation of recall. # @return [String] ('binary', 'micro', 'macro') attr_reader :average # Create a new evaluation measure calculater for recall score. # # @param average [String] The average type ('binary', 'micro', 'macro') def initialize(average: 'binary') @average = average end # Calculate average recall # # @param y_true [Numo::Int32] (shape: [n_samples]) Ground truth labels. # @param y_pred [Numo::Int32] (shape: [n_samples]) Predicted labels. # @return [Float] Average recall def score(y_true, y_pred) case @average when 'binary' recall_each_class(y_true, y_pred).last when 'micro' micro_average_recall(y_true, y_pred) when 'macro' macro_average_recall(y_true, y_pred) end end end end end