module TensorFlow class Tensor def initialize(value = nil, dtype: nil, shape: nil, pointer: nil) @status = FFI.TF_NewStatus if pointer @pointer = pointer else data = Array(value) shape ||= calculate_shape(value) if shape.size > 0 dims_ptr = ::FFI::MemoryPointer.new(:int64, shape.size) dims_ptr.write_array_of_int64(shape) else dims_ptr = nil end data = data.flatten dtype ||= Utils.infer_type(data) type = FFI::DataType[dtype] case dtype when :float, :double, :int32, :uint8, :int16, :int8, :int64, :uint16, :uint32, :uint64 data_ptr = ::FFI::MemoryPointer.new(dtype, data.size) data_ptr.send("write_array_of_#{dtype}", data) when :bfloat16 # https://en.wikipedia.org/wiki/Bfloat16_floating-point_format data_ptr = ::FFI::MemoryPointer.new(:int8, data.size * 2) data_ptr.write_bytes(data.map { |v| [v].pack("g")[0..1] }.join) when :complex64 data_ptr = ::FFI::MemoryPointer.new(:float, data.size * 2) data_ptr.write_array_of_float(data.flat_map { |v| [v.real, v.imaginary] }) when :complex128 data_ptr = ::FFI::MemoryPointer.new(:double, data.size * 2) data_ptr.write_array_of_double(data.flat_map { |v| [v.real, v.imaginary] }) when :string data_ptr = string_ptr(data) when :bool data_ptr = ::FFI::MemoryPointer.new(:int8, data.size) data_ptr.write_array_of_int8(data.map { |v| v ? 1 : 0 }) else raise "Unknown type: #{dtype}" end callback = ::FFI::Function.new(:void, [:pointer, :size_t, :pointer]) do |data, len, arg| # FFI handles deallocation end tensor = FFI.TF_NewTensor(type, dims_ptr, shape.size, data_ptr, data_ptr.size, callback, nil) @pointer = FFI.TFE_NewTensorHandle(tensor, @status) check_status @status end ObjectSpace.define_finalizer(self, self.class.finalize(@pointer, @status, tensor)) end def +(other) Math.add(self, other) end def -(other) Math.subtract(self, other) end def *(other) Math.multiply(self, other) end def /(other) Math.divide(self, other) end def %(other) Math.floormod(self, other) end def value value = case dtype when :float, :double, :int32, :uint8, :int16, :int8, :int64, :uint16, :uint32, :uint64 data_pointer.send("read_array_of_#{dtype}", element_count) when :bfloat16 byte_str = data_pointer.read_bytes(element_count * 2) element_count.times.map { |i| "#{byte_str[(2 * i)..(2 * i + 1)]}\x00\x00".unpack1("g") } when :complex64 data_pointer.read_array_of_float(element_count * 2).each_slice(2).map { |v| Complex(*v) } when :complex128 data_pointer.read_array_of_double(element_count * 2).each_slice(2).map { |v| Complex(*v) } when :string # string tensor format # https://github.com/tensorflow/tensorflow/blob/5453aee48858fd375172d7ae22fad1557e8557d6/tensorflow/c/tf_tensor.h#L57 start_offset_size = element_count * 8 offsets = data_pointer.read_array_of_uint64(element_count) element_count.times.map { |i| (data_pointer + start_offset_size + offsets[i]).read_string } when :bool data_pointer.read_array_of_int8(element_count).map { |v| v == 1 } when :resource return data_pointer else raise "Unknown type: #{dtype}" end reshape(value, shape) end def dtype @dtype ||= FFI::DataType[FFI.TFE_TensorHandleDataType(@pointer)] end def shape @shape ||= begin shape = [] num_dims.times do |i| shape << FFI.TFE_TensorHandleDim(@pointer, i, @status) check_status @status end shape end end def to_s inspect end def to_i value.to_i end def to_a value end def to_ptr @pointer end def inspect inspection = %w(value shape dtype).map { |v| "#{v}: #{send(v).inspect}"} "#<#{self.class} #{inspection.join(", ")}>" end def self.finalize(pointer, status, tensor) # must use proc instead of stabby lambda proc do FFI.TFE_DeleteTensorHandle(pointer) FFI.TFE_DeleteStatus(status) FFI.TFE_DeleteTensor(tensor) if tensor end end private def num_dims ret = FFI.TFE_TensorHandleNumDims(@pointer, @status) check_status @status ret end def element_count ret = FFI.TFE_TensorHandleNumElements(@pointer, @status) check_status @status ret end def data_pointer tensor = FFI.TFE_TensorHandleResolve(@pointer, @status) check_status @status FFI.TF_TensorData(tensor) end def reshape(arr, dims) return arr.first if dims.empty? arr = arr.flatten dims[1..-1].reverse.each do |dim| arr = arr.each_slice(dim) end arr.to_a end def calculate_shape(value) shape = [] d = value while d.is_a?(Array) shape << d.size d = d.first end shape end # string tensor format # https://github.com/tensorflow/tensorflow/blob/5453aee48858fd375172d7ae22fad1557e8557d6/tensorflow/c/tf_tensor.h#L57 def string_ptr(data) start_offset_size = data.size * 8 offsets = [0] data.each do |str| offsets << offsets.last + str.bytesize + 1 end data_ptr = ::FFI::MemoryPointer.new(:char, start_offset_size + offsets.pop) data_ptr.write_array_of_uint64(offsets) data.zip(offsets) do |str, offset| (data_ptr + start_offset_size + offset).write_string(str) end data_ptr end def check_status(status) Utils.check_status(status) end end end