require 'narray' class NArray def _dump *ignored Marshal.dump :typecode => typecode, :shape => shape, :data => to_s end def self._load buf h = Marshal.load buf typecode = h[:typecode] shape = h[:shape] data = h[:data] to_na data, typecode, *shape end def inspect #ep "called inspect" "#{self.class}.to_narray(#{self.to_a.inspect})" end end class GSL::Tensor class << self def method_missing(meth, *args) #ep 'calling... ', meth, args ans = new(NArray.send(meth, *args.reverse)) #ep 'got', ans ans end end attr_reader :narray def self.alloc(*args) new(NArray.float(*args.reverse)) end def initialize(narray) @narray = narray end def inspect "GSL::Tensor.new(#{@narray.inspect})" end def [](*args) #if args.inject(true){|b,i| b and i.kind_of? Integer} #@narray[*args.reverse] #else #self.class.new(@narray[*args.reverse]) #end case ans = @narray[*args.reverse] when Numeric ans else self.class.new(@narray[*args.reverse]) end end def []=(*args, value) #def []=(*args) #ep 'args', args, value @narray[*args.reverse] = value end def shape @narray.shape.reverse end def reshape!(*args) #ep 'rags', args @narray.reshape!(*args.reverse) end def to_a @narray.transpose(*(0...@narray.shape.size).to_a.reverse).to_a end def transpose(*args) self.class.new(@narray.transpose(*args)) end def method_missing(meth, *args) result = @narray.send(meth, *args.reverse) if result.kind_of? NArray self.class.new(result) else result end rescue NoMethodError self.class.new(NMath.send(meth, @narray)) end def iterate(&block) shp = shape cumul = 1 cumulshp = [] for i in 1..shape.size cumulshp[shp.size-i] = cumul cumul *= shp[shp.size-i] end #= shape.reverse.map{|dim| cumul*=(dim); cumul.to_i}.reverse #ep cumulshp; gets (cumulshp[0]*shp[0]).times do |n| #indexes = cumulshp.reverse.map{|cumul| rem = n%cumul; n-=rem; rem}.reverse indexes = cumulshp.map{|cumul| idx = (n/cumul).floor; n -= idx*cumul; idx} yield(*indexes) end end def iterate_row_maj(&block) shp = shape cumul = 1 cumulshp = [] for i in 0...shape.size cumulshp[i] = cumul cumul *= shp[i] end #= shape.reverse.map{|dim| cumul*=(dim); cumul.to_i}.reverse #ep cumulshp; gets (cumulshp[-1]*shp[-1]).times do |n| #indexes = cumulshp.reverse.map{|cumul| rem = n%cumul; n-=rem; rem}.reverse indexes = cumulshp.reverse.map{|cumul| idx = (n/cumul).floor; n -= idx*cumul; idx}.reverse yield(*indexes) end end end class GSL::TensorComplex < GSL::Tensor attr_reader :narray def self.alloc(*args) new(NArray.complex(*args.reverse)) end def real GSL::Tensor.new(@narray.real) end def abs GSL::Tensor.new(@narray.abs) end end class CodeRunner::Gs2 def gsl_tensor(name, options) tensor = send((name.to_s+"_gsl_tensor").to_sym , options) end module GSLTensors def moment_gsl_tensor(options) if options[:t_index] raise ArgumentError.new("Moments are not written out as a function of time currently") #ep options; gets raise CRFatal.new("write_phi_over_time is not enabled so this function won't work") unless @write_phi_over_time arr = GSL::Tensor.new(netcdf_file.var(options[:field_name].to_s + '_t').get({'start' => [0,(options[:thetamin]||0),0,0, options[:t_index] - 1], 'end' => [-1,(options[:thetamax]||-1),(options[:nakx]||0)-1,(options[:naky]||0)-1, options[:t_index] - 1]})) #ep 'arr.shape', arr.shape arr.reshape!(*arr.shape.slice(1...arr.shape.size)) else arr = GSL::Tensor.new(netcdf_file.var(options[:moment_name]).get({'start' => [0,(options[:thetamin]||0),0,0,options[:species_element]], 'end' => [-1,(options[:thetamax]||-1),(options[:nakx]||0)-1,(options[:naky]||0)-1,options[:species_element]]})) #ep 'arr.shape', arr.shape end arr.reshape!(*arr.shape.slice(1...arr.shape.size)) arr[0, true, true, true] = 0.0 if options[:no_zonal] #arr = arr[options[:nakx] ? 0...options[:nakx] : true, options[:naky] ? 0...options[:naky] : true, true, true] if options[:nakx] or options[:naky] return arr end def field_netcdf_name(field_name, time_varying = false) #p field_name.to_s name = case field_name.to_s when /phi/ time_varying ? 'phi_t' : 'phi' when /density/ time_varying ? 'ntot_t' : 'density' when /apar/ time_varying ? 'apar_t' : 'apar' else raise "Unknown field name: #{field_name}" end #p name return name end def field_species_element(options) case options[:field_name].to_s when /density/ options.convert_to_index(self, :species) ep 'options', options options[:species_index] - 1 else nil end end def field_gsl_tensor(options) species_element = field_species_element(options) ep 'species_element', species_element if options[:t_index] #ep options; gets #raise CRFatal.new("write_phi_over_time is not enabled so this function won't work") unless @write_phi_over_time arr = GSL::Tensor.new(netcdf_file.var(field_netcdf_name(options[:field_name], true)).get({'start' => [0,(options[:thetamin]||0),0,0, species_element, options[:t_index] - 1].compact, 'end' => [-1,(options[:thetamax]||-1),(options[:nakx]||0)-1,(options[:naky]||0)-1, species_element, options[:t_index] - 1].compact})) #ep 'arr.shape', arr.shape arr.reshape!(*arr.shape.slice(1...arr.shape.size)) else arr = GSL::Tensor.new(netcdf_file.var(field_netcdf_name(options[:field_name])).get({'start' => [0,(options[:thetamin]||0),0,0, species_element].compact, 'end' => [-1,(options[:thetamax]||-1),(options[:nakx]||0)-1,(options[:naky]||0)-1, species_element].compact})) #ep 'arr.shape', arr.shape end if species_element arr.reshape!(*arr.shape.slice(1...arr.shape.size)) end if options[:interpolate_x] shape = arr.narray.shape #p 'shape', shape shape[2] = (shape[2]-1)*options[:interpolate_x] + 1 #p shape arr = GSL::Tensor.new(arr.narray.expand(*shape, 0.0)) end if options[:interpolate_y] shape = arr.narray.shape #p 'shape', shape shape[3] = (shape[3]-1)*options[:interpolate_y] + 1 #p shape arr = GSL::Tensor.new(arr.narray.expand(*shape, 0.0)) end if gryfx? and options[:periodic] shape = arr.narray.shape shape[1]+=1 arr = GSL::Tensor.new(arr.narray.expand(*shape, 0.0)) shpe = arr.shape for i in 0...shpe[0] for j in 0...shpe[1] for r in 0...shpe[3] arr[i, j, -1, r] = arr[i, j, 0, r] end end end end arr[0, true, true, true] = 0.0 if options[:no_zonal] #arr = arr[options[:nakx] ? 0...options[:nakx] : true, options[:naky] ? 0...options[:naky] : true, true, true] if options[:nakx] or options[:naky] return arr end # Returns a rank 3 tensor which is the real potential (i.e. Fourier transformed from the GS2 output) as a function of the y index, the x index and the theta index. def phi_real_space_gsl_tensor(options) return field_real_space_gsl_tensor(options.absorb(field_name: :phi)) end def field_real_space_gsl_tensor(options) fieldc = field_gsl_tensor_complex(options) shape = fieldc.shape workspacex = GSL::Vector::Complex.alloc(shape[1]) workspacey = GSL::Vector.alloc(shape[0]*2-2+shape[0]%2) field_real_space = GSL::Tensor.alloc(workspacey.size, shape[1], shape[2]) for j in 0...shape[2] #theta for i in 0...shape[0] #ky #narr = fieldc[i, true, j] for k in 0...shape[1] workspacex[k] = GSL::Complex.alloc(fieldc[i,k,j].real, fieldc[i,k,j].imag) end workspacex = workspacex.backward for k in 0...shape[1] fieldc[i,k,j] = Complex(*workspacex[k].to_a) end end for k in 0...shape[1] #kx m = 0 for i in 0...shape[0] #ky workspacey[m] = fieldc[i,k,j].real m+=1 next if i==0 or (shape[0]%2==0 and i == shape[0]/2 + 1) workspacey[m] = fieldc[i,k,j].imag m+=1 end workspacey = workspacey.backward for i in 0...workspacey.size field_real_space[i,k,j] = workspacey[i] end end end shp = field_real_space.shape #ep options field_real_space = field_real_space[options[:ymin]||0..options[:ymax]||(shp[0]-1), options[:xmin]||0..options[:xmax]||(shp[1]-1), true] if kint = options[:interpolate_theta] shape = field_real_space.shape new_shape = shape.dup new_shape[-1] = ((shape[-1]-1)*kint+1) field_real_space_new = GSL::Tensor.float(*new_shape) #p shape,new_shape for i in 0...(new_shape[0]) for j in 0...(new_shape[1]) field_real_space_new[i,j, new_shape[-1]-1] = field_real_space[i,j,shape[-1]-1] # set the endpoint for k in 0...(new_shape[-1]-1) km = k%kint frac = km.to_f/kint.to_f #kold = (k-km)/(new_shape[-1]-1)*(shape[-1]-1) kold = (k-km)/kint #ep ['k', k, 'kold', kold] field_real_space_new[i,j, k] = field_real_space[i,j, kold] * (1.0-frac) + field_real_space[i,j, kold+1] * frac end end end field_real_space = field_real_space_new end return field_real_space end def field_real_space_gsl_tensor_2(options) field = field_gsl_tensor(options) field_narray = field.narray shape = field.shape workspacex = GSL::Vector::Complex.alloc(shape[1]) workspacey = GSL::Vector.alloc(shape[0]*2-2+shape[0]%2) field_real_space = GSL::Tensor.alloc(workspacey.size, shape[1], shape[2]) field_real_space_narray = field_real_space.narray for j in 0...shape[2] #theta for i in 0...shape[0] #ky #narr = fieldc[i, true, j] for k in 0...shape[1] workspacex[k] = GSL::Complex.alloc(field_narray[0,j,k,i], field_narray[1,j,k,i]) end workspacex = workspacex.backward for k in 0...shape[1] field_narray[0,j,k,i] = workspacex[k].real field_narray[1,j,k,i] = workspacex[k].imag end end for k in 0...shape[1] #kx m = 0 for i in 0...shape[0] #ky workspacey[m] = field_narray[0,j,k,i] m+=1 next if i==0 or (shape[0]%2==0 and i == shape[0]/2 + 1) workspacey[m] = field_narray[1,j,k,i] m+=1 end workspacey = workspacey.backward for i in 0...workspacey.size field_real_space_narray[j,k,i] = workspacey[i] end end end shp = field_real_space.shape #p 'test', field_real_space[0,2,3] #ep options field_real_space = field_real_space[options[:ymin]||0..options[:ymax]||(shp[0]-1), options[:xmin]||0..options[:xmax]||(shp[1]-1), true] #p 'test2', field_real_space[0,2,3] if kint = options[:interpolate_theta] shape = field_real_space.shape new_shape = shape.dup new_shape[-1] = ((shape[-1]-1)*kint+1) field_real_space_new = GSL::Tensor.float(*new_shape) field_real_space_new_narray = field_real_space_new.narray #p shape,new_shape for i in 0...(new_shape[0]) for j in 0...(new_shape[1]) field_real_space_new_narray[new_shape[-1]-1, j, i] = field_real_space_narray[shape[-1]-1, j, i] # set the endpoint for k in 0...(new_shape[-1]-1) km = k%kint frac = km.to_f._orig_div(kint.to_f) #kold = (k-km)/(new_shape[-1]-1)*(shape[-1]-1) kold = (k-km)._orig_div(kint) #ep ['k', k, 'kold', kold] field_real_space_new_narray[k,j,i] = field_real_space_narray[kold,j,i]._orig_mul(1.0-frac) + field_real_space_narray[kold+1,j,i]._orig_mul(frac) #if (i==0 and j==2 and k==3) #p ['frac', frac] #end end end end field_real_space = field_real_space_new end #p field_real_space_new.shape; return field_real_space end def apar_gsl_tensor(options) return GSL::Tensor.new(netcdf_file.var('apar').get) end def bpar_gsl_tensor(options) return GSL::Tensor.new(netcdf_file.var('bpar').get) end # Order is R0,Z0,a0,Rprim,Zprim,aprim def geometric_factors_gsl_tensor(options) #ops = options.dup; ops.delete :phi #ep ops; gets case @equilibrium_option when "s-alpha" return geometric_factors_salpha_gsl_tensor(options) else theta_vec = gsl_vector(:theta, options) factors = GSL::Tensor.alloc(6,theta_vec.size) values = File.read("#@directory/#@run_name.g").split(/\s*\n\s*/) 3.times{values.shift} values = values.map{|str| str.split(/\s+/).map{|s| s.to_f}}.transpose #ep values shape = factors.shape for i in 0...shape[0] unless options[:interpolate_theta] for j in 0...shape[1] factors[i,j] = values[i+1][j] end else opts = options.dup opts[:interpolate_theta] = nil theta_vec_short = gsl_vector(:theta, {}) p 'sizes', [theta_vec_short.size, values[i+1].to_gslv.size] interp = GSL::ScatterInterp.alloc(:linear, [theta_vec_short, values[i+1].to_gslv], true) for j in 0...theta_vec.size factors[i,j] = interp.eval(theta_vec[j]) end end end #ep factors return factors end end # Order is R0,Z0,a0,Rprim,Zprim,aprim def geometric_factors_salpha_gsl_tensor(options) raise "Please specify options[:Rgeo]" unless options[:Rgeo] theta_vec = gsl_vector(:theta, options) factors = GSL::Tensor.alloc(6,theta_vec.size) q_actual = options[:q_actual] pka = epsl/q_actual #pka = @pk||2*@kp for i in 0...theta_vec.size theta = theta_vec[i] c = Math.cos(theta) s = Math.sin(theta) factors[0,i] = options[:Rgeo]*(1.0 + eps * c + eps * (shift||0)) factors[1,i] = options[:Rgeo] * eps * s factors[2,i] = -epsl/pka * theta - eps * epsl/pka * s factors[3,i] = c * options[:Rgeo] * eps / 2 factors[4,i] = s * options[:Rgeo] * eps / 2 factors[5,i] = - theta * epsl**2 / 2 / pka / eps * (shat||0) - epsl**2 / 2 / pka * s end return factors end private :geometric_factors_salpha_gsl_tensor # Returns a rank 2 tensor, which gives, as a function of the x index j and the theta index k, the y index nearest to a poloidal plane at angle options[:torphi] is the torus was filled with periodic copies of the flux surface. Used for making cross sections at a constant toroidal angle. def constant_torphi_surface_gsl_tensor(options) ops = options.dup IRRELEVANT_INDICES.each{|v| ops.delete(v)} return cache[[:constant_torphi_surface_gsl_tensor, ops]] if cache[[:constant_torphi_surface_gsl_tensor, ops]] correct_3d_options(options) torphiout = options[:torphi] cyls = cylindrical_coordinates_gsl_tensor(options.absorb({extra_points: :y})) shpc = cyls.shape factors = geometric_factors_gsl_tensor(options) #ep shpc, 'shpc' #xsize = case shpc[2] yvec = gsl_vector('y', options) #ep yvec.to_a ; gets x = gsl_vector('x', options) dy = yvec[1] - yvec[0] torphi_const = GSL::Tensor.int(shpc[2], shpc[3]) # don't include extra x point xfac = 1.0 / options[:rho_star_actual] yfac = options[:rhoc_actual] / options[:q_actual] / options[:rho_star_actual] #coordinates[2,i,j,k] = y[i] / yfac - factors[2,k] - x[j]/xfac*factors[5,k] # phi twopi = Math::PI*2 for j in 0...shpc[2] for k in 0...shpc[3] y = yfac * (torphiout + factors[2,k] + x[j]/xfac*factors[5,k]) if options[:no_copies] i = (y/dy).floor else i = (y/dy).floor % yvec.size end torphi_const[j,k] = i end end return torphi_const #ep torphi_const; gets end #def constant_torphi_surface_gsl_tensor2(options) #ops = options.dup #IRRELEVANT_INDICES.each{|v| ops.delete(v)} #return cache[[:constant_torphi_surface_gsl_tensor, ops]] if cache[[:constant_torphi_surface_gsl_tensor, ops]] #torphiout = options[:torphi] #correct_3d_options(options) #cyls = cylindrical_coordinates_gsl_tensor(options.absorb({extra_points: :y})) #shpc = cyls.shape ##ep shpc, 'shpc' ##xsize = case shpc[2] #torphi_const = GSL::Tensor.int(shpc[2], shpc[3]) # don't include extra x point ##ep torphi_const; gets #y = gsl_vector('y', options) #lastbracketed = nil #lastj = -1 #for k in 0...shpc[3] # theta index #for j in 0...(shpc[2]) # x index #deltorphi = cyls[2,shpc[1]-1,j,k] - cyls[2,0,j,k] #raise "Periodicity not satisfied: #{(2*Math::PI/deltorphi+1.0e-8)%1.0}, #{(2*Math::PI/deltorphi+1.0e-5)}" unless ((2.0*Math::PI/deltorphi)+1.0e-8)%1.0 < 1.0e-5 #m3 = (torphiout)%deltorphi #for i in 0...shpc[1]-1 # y index, excluding periodic extra point ##p i #torphi1 = cyls[2,i,j,k] #torphi2 = cyls[2,i+1,j,k] ##ep cyls[2,true,j,k].to_a #m1 = (torphi1 )%deltorphi #m2 = (torphi2 )%deltorphi #bracketed = ((m1-m3).abs < 1.0e-4) || ( #(m2-m3.abs) > 1.0e-4 && #(m2 - m3) * #(m1 - m3) * #(m2 - m1) * #(torphi2 - torphi1) < 0) ##p 'n0', (2*Math::PI/deltorphi).round #bracketed2 = (2*Math::PI/deltorphi + 1).round.times.inject(false) do |b,n| #epsn = 1.0e-4 #eps2 = 1.0e-4 #upp = torphiout + deltorphi * n #lwr = torphiout - deltorphi * n ##measure = ((torphi1 < upp or (torphi1 - upp).abs < epsn) and upp+epsn < torphi2) or ((torphi1 < lwr or (torphi1-lwr).abs < eps) and lwr + eps < torphi2) #a1 = a2 = a3 = b1 = b2 = b3 = 'q' ##measure = (( ###a1=((torphi1-upp).abs < (torphi2-upp).abs) and ##(a1=((torphi2-upp).abs > 1.0e-7)) and ##(a2=((torphi1 < upp or (torphi1 - upp).abs < epsn))) and ##(a3=(upp < torphi2)) ##) or ( ###b1=((torphi1-lwr).abs < (torphi2-lwr).abs) and ##(b1=((torphi2-lwr).abs > 1.0e7)) and ##(b2=(torphi1 < lwr or (torphi1-lwr).abs < epsn)) and ##(b3 = (lwr < torphi2)) ##)) #a1=((torphi2-upp).abs > eps2) #a2=((torphi1 < upp or (torphi1 - upp).abs < epsn)) #a3=(upp < torphi2) #b1=(torphi2-lwr).abs > eps2 #b2=(torphi1 < lwr or (torphi1-lwr).abs < epsn) #b3 = (lwr < torphi2) #measure = ((a1 and a2 and a3) or (b1 and b2 and b3)) ##p 'measure', measure, [torphi1, torphi2, upp, lwr , i,j,k, y[i], y[(i+1)%y.size], deltorphi, n, a1, a2, a3, b1, b2, b3] if measure and j==0 #; gets if [j,k] == [5,8] # if measure #b or measure #end ##bracketed = bracketed2 #raise "Measures don't agree #{bracketed}, #{bracketed2}" unless bracketed2 == bracketed ##d2 = torphi2 - torphiout ##d1 = torphiout - torphi1 #if bracketed #raise "Doubled up" if lastbracketed == [j,k] #raise "Missed: #{j},#{k}, #{lastbracketed.inspect} #{[j-1,k].inspect} #{[shpc[2]-1, k-1].inspect}" unless lastbracketed == [j-1,k] or lastbracketed == [shpc[2]-1, k-1] if lastbracketed #torphi_const[j,k] = i #lastbracketed = [j,k] #lastj = j #end #end # y loop #end # x loop #end # theta loop ##torphi_const2 = constant_torphi_surface_gsl_tensor2(options) ##p 'the same? ', torphi_const2.to_a, torphi_const.to_a, torphi_const2 == torphi_const ##exit ##exit #cache[[:constant_torphi_surface_gsl_tensor, ops]] = torphi_const ## save the run to save the hard_cache #return torphi_const #end FIELD_VALUES = [:phi, :density, :apar, :bpar] TRIVIAL_INDICES = [:graphkit_name] TIME_VARYING_INDICES = [:t_index, :begin_element, :end_element, :frame_index, :t_index_window] IRRELEVANT_INDICES = FIELD_VALUES + TRIVIAL_INDICES + TIME_VARYING_INDICES # Adjust n0, rho_star_actual and q_actual to ensure periodicity # def correct_3d_options(options) raise "Please specify options[:rho_star] or options[:n0]" unless options[:rho_star] or options[:n0] case @equilibrium_option when "s-alpha" qinp = epsl / (pk||2*kp) #xfac = @epsl**4/options[:rho_star]/4/pka**2/@eps**2 #xfac_geo = 1 #yfac = 1/options[:rho_star]/@epsl*2*pka*@eps #yfac_geo = 2*pka*@eps/@epsl**2 #yfac_geo = 2*pka*@eps/@epsl**2 options[:rhoc_actual] =rhoc = 2 * eps / epsl else options[:rhoc_actual] = rhoc = @rhoc qinp = @qinp end #eputs "Checking that rho_star and q satisfy periodicity..." rho_star_inp = options[:rho_star] y = gsl_vector('y', options) ly = (y[1]-y[0]) * (y.size) n0_fac = 2.0*Math::PI * rhoc / ly n0_inp = options[:n0] || n0_fac / qinp / rho_star_inp if n0_inp%1.0==0.0 n0 = n0_inp else #eputs "Input n0 is equal to #{n0_inp}..." n0 = n0_inp.ceil #eputs "Set n0 to #{n0}..." end if (qinp*n0)%1.0==0.0 q_actual = qinp else q_actual = (qinp*n0).round.to_f/n0 #eputs "Set q to #{q_actual}..." end options[:q_actual] = q_actual unless options[:rho_star_actual] and options[:rho_star_actual] == n0_fac/n0/q_actual #eputs "Adjusting rho_star to satisfy periodicity ..." options[:rho_star_actual] = n0_fac/n0/q_actual #eputs "Set rhostar to #{options[:rho_star_actual]}..." #eputs "Note... to avoid adjustment of q specify n0 as an input rather than rho_star. Make sure that n0 is an integer and n0 * q is an integer." end end # Return a rank 4 tensor which give # cylindrical coordinates R,Z,torphi as a function # of gs2 coordinates y, x, theta. # # a = cylindrical_coordinates_gsl_tensor(options) # # # pseudocode # R(y[i], x[j], theta[k]) = a[0,i,j,k] # Z(y[i], x[j], theta[k]) = a[1,i,j,k] # torphi(y[i], x[j], theta[k]) = a[2,i,j,k] def cylindrical_coordinates_gsl_tensor(options) ops = options.dup (IRRELEVANT_INDICES + [:torphi, :torphi_values]).each{|v| ops.delete(v)} return cache[[:cylindrical_coordinates_gsl_tensor, ops]] if cache[[:cylindrical_coordinates_gsl_tensor, ops]] #ep ops; gets #options = options.dup x = gsl_vector('x', options) y = gsl_vector('y', options) ly = 2*Math::PI*y0#(y[1]-y[0]) * (y.size) if [true,:x].include? options[:extra_points] ep "Extending x..." x = x.connect([2*x[-1] - x[-2]].to_gslv).dup end if [true,:y].include? options[:extra_points] ep "Extending y..." y = y.connect([2.0*y[-1] - y[-2]].to_gslv).dup raise "ly corrected incorrectly #{ly},#{y[-1]},#{y[0]},#{y[-1]-y[0]}" unless (ly-(y[-1] - y[0])).abs / ly.abs < 1.0e-6 end #if options[:xmax] #if options[:xmin] #x = x.subvector(options[:xmin], options[:xmax] - options[:xmin]) #else #x = x[options[:xmax]].to_gslv #end #elsif options[:xmin] #x = x[options[:xmin]].to_gslv #end #if options[:ymax] #if options[:ymin] #y = y.subvector(options[:ymin], options[:ymax] - options[:ymin]) #else #y = y[options[:ymax]].to_gslv #end #elsif options[:ymin] #y = y[options[:ymin]].to_gslv #end #ep [options, options[:xmin]||0, (options[:xmax]||x.size-1) - (options[:xmin]||0) + 1] x = x.subvector(options[:xmin]||0, (options[:xmax]||x.size-1) - (options[:xmin]||0) + 1).dup # if options[:xout] and options[:xin] y = y.subvector(options[:ymin]||0, (options[:ymax]||y.size-1) - (options[:ymin]||0) + 1).dup # if options[:yout] and options[:yin] ###y = y.subvector(options[:ymin], options[:ymax] - options[:ymin] + 1)# if yi = options[:yout] and options[:yin] # ###ep 'ncopy', options[:ncopy] #y = y + options[:ncopy] * (y[-1]-y[0]) if options[:ncopy] y = y + options[:ncopy] * ly if options[:ncopy] #ep 'y', y #ep y; gets #ep options; gets theta = gsl_vector('theta', options) #ep theta; gets; #ep 'thsize', @ntheta, theta.size correct_3d_options(options) rhoc = options[:rhoc_actual] q_actual = options[:q_actual] xfac = 1.0 / options[:rho_star_actual] yfac = rhoc / q_actual / options[:rho_star_actual] factors = geometric_factors_gsl_tensor(options) #ep ['factors.shape', factors.shape] coordinates = GSL::Tensor.alloc(3, y.size, x.size, theta.size) for i in 0...y.size for j in 0...x.size for k in 0...theta.size coordinates[0,i,j,k] = factors[0,k] + x[j]/xfac*factors[3,k] # R coordinates[1,i,j,k] = factors[1,k] + x[j]/xfac*factors[4,k] # Z coordinates[2,i,j,k] = y[i] / yfac - factors[2,k] - x[j]/xfac*factors[5,k] # phi #ep [i,j,k], coordinates[0, false, j,k].to_a if gs2f = options[:gs2_coordinate_factor] rgs2 = (x[j]**2 + y[i]**2 )**0.5*(1.0 + 2.0 * Float::EPSILON) #p ['x', x[j], 'y', y[i], 'r', rgs2] if agk? if rgs2 < 1.0e-8 phigs2 = 0 else phigs2 = Math.acos(x[j]/rgs2) end coordinates[0,i,j,k] = rgs2 * gs2f + coordinates[0,i,j,k] * (1.0-gs2f) coordinates[1,i,j,k] = theta[k] * gs2f + coordinates[1,i,j,k] * (1.0-gs2f) coordinates[2,i,j,k] = phigs2 * gs2f + coordinates[2,i,j,k] * (1.0-gs2f) end end end end #exit case tp = options[:toroidal_projection] when Numeric coordinates[2, false] = tp end cache[[:cylindrical_coordinates_gsl_tensor, ops]] = coordinates #save # save the run to save the hard_cache return coordinates end # Return a rank 4 tensor which give # cartesian coordinates X,Y,Z as a function # of gs2 coordinates y, x, theta. # # a = cartesian_coordinates_gsl_tensor(options) # # # pseudocode # X(y[i], x[j], theta[k]) = a[0,i,j,k] # Y(y[i], x[j], theta[k]) = a[1,i,j,k] # Z(y[i], x[j], theta[k]) = a[2,i,j,k] def cartesian_coordinates_gsl_tensor(options) cyl = cylindrical_coordinates_gsl_tensor(options) shape = cyl.shape cart = GSL::Tensor.alloc(*shape) for i in 0...shape[1] for j in 0...shape[2] for k in 0...shape[3] r = cyl[0,i,j,k] z = cyl[1,i,j,k] phi = cyl[2,i,j,k] #cart[0,i,j,k] = r # Y cart[0,i,j,k] = r*Math.cos(phi) # X #cart[1,i,j,k] = phi # X cart[1,i,j,k] = r*Math.sin(phi) # Y cart[2,i,j,k] = z end end end cart end end #module include GSLTensors module GSLComplexTensors def phi_gsl_tensor_complex(options) return field_gsl_tensor_complex(options.absorb({field_name: :phi})) end def field_gsl_tensor_complex(options) field = field_gsl_tensor(options) fieldc = GSL::TensorComplex.alloc(*field.shape.slice(0..2)) nac = fieldc.narray na = field.narray for i in 0...field.shape[0] for j in 0...field.shape[1] for k in 0...field.shape[2] nac[k,j,i] = Complex(na[0,k,j,i],na[1,k,j,i]) end end end return fieldc end end #module include GSLComplexTensors end #class