require 'journey/nfa/dot' module Journey module NFA class TransitionTable include Journey::NFA::Dot attr_accessor :accepting attr_reader :memos def initialize @table = Hash.new { |h,f| h[f] = {} } @memos = {} @accepting = nil @inverted = nil end def accepting? state accepting == state end def accepting_states [accepting] end def add_memo idx, memo @memos[idx] = memo end def memo idx @memos[idx] end def []= i, f, s @table[f][i] = s end def merge left, right @memos[right] = @memos.delete left @table[right] = @table.delete(left) end def states (@table.keys + @table.values.map(&:keys).flatten).uniq end ### # Returns a generalized transition graph with reduced states. The states # are reduced like a DFA, but the table must be simulated like an NFA. # # Edges of the GTG are regular expressions def generalized_table gt = GTG::TransitionTable.new marked = {} state_id = Hash.new { |h,k| h[k] = h.length } alphabet = self.alphabet stack = [eclosure(0)] until stack.empty? state = stack.pop next if marked[state] || state.empty? marked[state] = true alphabet.each do |alpha| next_state = eclosure(following_states(state, alpha)) next if next_state.empty? gt[state_id[state], state_id[next_state]] = alpha stack << next_state end end final_groups = state_id.keys.find_all { |s| s.sort.last == accepting } final_groups.each do |states| id = state_id[states] gt.add_accepting id save = states.find { |s| @memos.key?(s) && eclosure(s).sort.last == accepting } gt.add_memo id, memo(save) end gt end ### # Returns set of NFA states to which there is a transition on ast symbol # +a+ from some state +s+ in +t+. def following_states t, a Array(t).map { |s| inverted[s][a] }.flatten.uniq end ### # Returns set of NFA states to which there is a transition on ast symbol # +a+ from some state +s+ in +t+. def move t, a Array(t).map { |s| inverted[s].keys.compact.find_all { |sym| sym === a }.map { |sym| inverted[s][sym] } }.flatten.uniq end def alphabet inverted.values.map(&:keys).flatten.compact.uniq.sort_by { |x| x.to_s } end ### # Returns a set of NFA states reachable from some NFA state +s+ in set # +t+ on nil-transitions alone. def eclosure t stack = Array(t) seen = {} children = [] until stack.empty? s = stack.pop next if seen[s] seen[s] = true children << s stack.concat inverted[s][nil] end children.uniq end def transitions @table.map { |to, hash| hash.map { |from, sym| [from, sym, to] } }.flatten(1) end private def inverted return @inverted if @inverted @inverted = Hash.new { |h,from| h[from] = Hash.new { |j,s| j[s] = [] } } @table.each { |to, hash| hash.each { |from, sym| if sym sym = Nodes::Symbol === sym ? sym.regexp : sym.left end @inverted[from][sym] << to } } @inverted end end end end